Advanced Multifunctional and Multiphysics Metamaterials for Mechanical Element Design
用于机械元件设计的先进多功能和多物理超材料
基本信息
- 批准号:RGPIN-2016-04716
- 负责人:
- 金额:$ 2.26万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
After more than a century of advances in the automotive industry, about 85 percent of fuel energy is still wasted in cars and is lost in the air. Similar scenarios occur with agricultural machines, trains, and airplanes. The energy waste does not only affect the economy, but also the environment. Smart materials are one of the promising alternatives for the reduction of energy consumption and for harvesting energy from these wasted energy resources. Smart multiphysics materials with multifunctional and energy harvesting abilities and a low level of energy consumption are being developed to provide intelligent self-powered sensors and actuators. Lightweight cellular materials are another alternative to reduce energy consumption. Cellular solids offer a robust low-mass alternative for applications requiring lightweight and stiff components. Cellular-based metamaterials fashioned by repeating unit cells have also enabled engineers to achieve physical properties beyond those found in nature. Inspired by biological systems, in which structural properties, sensing, actuating, and self-healing are integrated, smart multifunctional metamaterials can be introduced as a robust, cost-effective alternative to integrate multiple functionalities of smart materials and metamaterials. Multifunctional materials can not only serve as energy harvesters, but also as structural elements, self-powered electric devices, self-integrated heat exchangers, and power sources via embedded fuel-cells or photovoltaics. Advances in additive manufacturing have shown that fabricating multifunctional metamaterials is feasible.***My NSERC Discovery program aims to develop novel metamaterials constructed of a cellular microarchitecture with struts of active materials. The multifunctional metamaterials will be lightweight, multistable, and responsive to elastic, electric, magnetic, thermal, hygroscopic, chemical, and optical fields. The objective of the research program is to establish a multiscale multiphysics methodology, to manufacture smart cellular solids, and to elucidate that metamaterials can replace traditional mechanical components. Such advanced materials have enormous applications; for instance, energy harvesters can harness energy from the vibration of the frame of automobiles and space vehicles and also from the heat wasted in the combustion process. ***The research methodology consists of multiscale simulation, manufacturing, and experimental testing. The research provides a robust database for the innovative design of smart cellular solids. The successful development of multifunctional metamaterials will open a new multidisciplinary research direction and put Canada at the cutting edge of this technology. As a long-term objective, the research program aims to introduce novel smart metamaterials and a computational tool to a broad spectrum of industries.**
经过一个多世纪的汽车工业进步,大约 85% 的燃料能源仍然浪费在汽车中并流失在空气中。类似的情况也发生在农业机械、火车和飞机上。能源浪费不仅影响经济,也影响环境。智能材料是减少能源消耗和从这些浪费的能源中获取能量的有前途的替代品之一。正在开发具有多功能和能量收集能力以及低能耗的智能多物理材料,以提供智能自供电传感器和执行器。轻质蜂窝材料是减少能源消耗的另一种选择。多孔固体为需要轻质和刚性部件的应用提供了强大的低质量替代品。由重复晶胞形成的基于细胞的超材料也使工程师能够获得超越自然界的物理特性。受生物系统的启发,生物系统集成了结构特性、传感、驱动和自愈功能,智能多功能超材料可以作为一种强大、经济高效的替代方案来集成智能材料和超材料的多种功能。多功能材料不仅可以用作能量收集器,还可以作为结构元件、自供电电气设备、自集成热交换器以及通过嵌入式燃料电池或光伏发电的电源。增材制造的进步表明,制造多功能超材料是可行的。***我的 NSERC 发现计划旨在开发由活性材料支柱的细胞微结构构成的新型超材料。多功能超材料将是轻质的、多稳态的,并且对弹性、电、磁、热、吸湿、化学和光场敏感。该研究计划的目标是建立多尺度多物理方法,制造智能细胞固体,并阐明超材料可以取代传统的机械部件。这种先进材料具有巨大的应用前景;例如,能量采集器可以利用汽车和航天器框架振动以及燃烧过程中浪费的热量产生的能量。 ***研究方法包括多尺度模拟、制造和实验测试。该研究为智能细胞固体的创新设计提供了强大的数据库。多功能超材料的成功开发将开辟一个新的多学科研究方向,并使加拿大处于该技术的前沿。作为长期目标,该研究计划旨在向广泛的行业引入新型智能超材料和计算工具。 **
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
AkbarzadehShafaroudi, Abdolhamid其他文献
AkbarzadehShafaroudi, Abdolhamid的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('AkbarzadehShafaroudi, Abdolhamid', 18)}}的其他基金
Programmable Architected Multifunctional Metamaterials and Metastructures
可编程架构多功能超材料和超结构
- 批准号:
RGPIN-2022-04493 - 财政年份:2022
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
Programmable Architected Multifunctional Metamaterials and Metastructures
可编程架构多功能超材料和超结构
- 批准号:
RGPIN-2022-04493 - 财政年份:2022
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
Bio-inspired Hierarchical Multifunctional Metamaterials
仿生分层多功能超材料
- 批准号:
CRC-2019-00148 - 财政年份:2022
- 资助金额:
$ 2.26万 - 项目类别:
Canada Research Chairs
Bio-inspired Hierarchical Multifunctional Metamaterials
仿生分层多功能超材料
- 批准号:
CRC-2019-00148 - 财政年份:2022
- 资助金额:
$ 2.26万 - 项目类别:
Canada Research Chairs
Advanced Multifunctional and Multiphysics Metamaterials for Mechanical Element Design
用于机械元件设计的先进多功能和多物理超材料
- 批准号:
RGPIN-2016-04716 - 财政年份:2021
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
Advanced Multifunctional and Multiphysics Metamaterials for Mechanical Element Design
用于机械元件设计的先进多功能和多物理超材料
- 批准号:
RGPIN-2016-04716 - 财政年份:2021
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
Bio-Inspired Hierarchical Multifunctional Metamaterials
仿生分层多功能超材料
- 批准号:
CRC-2019-00148 - 财政年份:2021
- 资助金额:
$ 2.26万 - 项目类别:
Canada Research Chairs
Optimized Design of 3D Printed Lightweight Architected Shellular Materials
3D 打印轻质建筑贝壳材料的优化设计
- 批准号:
543334-2019 - 财政年份:2021
- 资助金额:
$ 2.26万 - 项目类别:
Collaborative Research and Development Grants
Bio-Inspired Hierarchical Multifunctional Metamaterials
仿生分层多功能超材料
- 批准号:
CRC-2019-00148 - 财政年份:2021
- 资助金额:
$ 2.26万 - 项目类别:
Canada Research Chairs
Optimized Design of 3D Printed Lightweight Architected Shellular Materials
3D 打印轻质建筑贝壳材料的优化设计
- 批准号:
543334-2019 - 财政年份:2021
- 资助金额:
$ 2.26万 - 项目类别:
Collaborative Research and Development Grants
相似国自然基金
衣康酸基多功能缓释肥料的性能及机理研究
- 批准号:32360803
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于GOx/纳米酶加载的智能级联响应多功能水凝胶在糖尿病骨缺损修复中的研究
- 批准号:82302688
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多功能钆基纳米体系早期检出并改善隐匿进展多发性硬化的MRI评估研究
- 批准号:82372020
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
基于多功能仿生探针的骨肉瘤肺转移灶演进可视化及其干预策略研究
- 批准号:
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:
负载CircATRNL1的多功能GDYO纳米酶驱动“铁死亡—光热治疗”促进口腔鳞癌放射增敏的研究
- 批准号:82303794
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Advanced Multifunctional and Multiphysics Metamaterials for Mechanical Element Design
用于机械元件设计的先进多功能和多物理超材料
- 批准号:
RGPIN-2016-04716 - 财政年份:2021
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
Advanced Multifunctional and Multiphysics Metamaterials for Mechanical Element Design
用于机械元件设计的先进多功能和多物理超材料
- 批准号:
RGPIN-2016-04716 - 财政年份:2021
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
Advanced Multifunctional and Multiphysics Metamaterials for Mechanical Element Design
用于机械元件设计的先进多功能和多物理超材料
- 批准号:
RGPIN-2016-04716 - 财政年份:2020
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
Advanced Multifunctional and Multiphysics Metamaterials for Mechanical Element Design
用于机械元件设计的先进多功能和多物理超材料
- 批准号:
RGPIN-2016-04716 - 财政年份:2020
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
Advanced Multifunctional and Multiphysics Metamaterials for Mechanical Element Design
用于机械元件设计的先进多功能和多物理超材料
- 批准号:
RGPIN-2016-04716 - 财政年份:2019
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual