Programmable Architected Multifunctional Metamaterials and Metastructures

可编程架构多功能超材料和超结构

基本信息

  • 批准号:
    RGPIN-2022-04493
  • 负责人:
  • 金额:
    $ 3.35万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Increasing global concerns about energy production, environmental pollution, and economy growth demand groundbreaking avenues for highly efficient structural and energy materials. Load-bearing, shape-transforming, energy converting, and autonomous sensing properties should coexist in multipurpose smart materials to unlock an unprecedented material property space for addressing the challenging demands. Multifunctional metamaterials can meet multiple functional requirements and deliver properties beyond what are found in naturally occurring materials. The unrivalled properties of metamaterials are mainly derived from their intricate underlying architecture. Additive manufacturing has emerged as a frontrunner for facile fabrication of mechanical metamaterials. The versatility of 3D printing-assisted fabrication also allows the production of functionalized passive/active ferroelectric materials to realize previously impossible smart metamaterials for tactile/temperature sensors and energy harvesters. The majority of rational designs of metamaterials have relied on intuition. However, tuning the unmatched properties of multifunctional metamaterials, comprised of mechanics and smart material realms, calls for understanding their programmability and size-effect traits. While metamaterials are usually periodic, metabeams/plates do not share the same level of periodicity. These advocate the necessity of developing a self-sufficient theory for designing multifunctional metamaterials/structures. Long-term vision of this research is to develop a platform for systematic, rather than intuitive, design of metamaterials for targeted functionalities. As short-term objectives and with roots in cellular solids and smart materials, we aim at creating programmable, reconfigurable, and size-dependent ferroelectric metamaterials. We inspire from crystallographic symmetry classes, harness elastic instability, exploit multiphysical stimuli, and utilize advanced manufacturing to introduce novel classified multifunctional metamaterials/structures. We resort to delicate topological design of cellular architecture and constitutive hinges, stability analyses, generalized continuum theory, multiphysics simulation, 3D printing, and experimental thermo-electro-mechanical characterization tests. The programmable and tunable architected multifunctional metamaterials/structures will enable offering cutting-edge economic solutions for the realization of next generation resilient smart components. This program provides HQP with well-defined training plans to gain a unique blend of expertise in architectural metamaterial design, non-classical continuum-based modelling, multiscale multiphysics simulation, 3D printing and advanced fabrication, and experimental material characterization. The trained skillful HQP will eventually contribute towards smart material innovation and keep Canada as a leader in additively-manufactured products and piezoelectric devices.
全球对能源生产、环境污染和经济增长的日益关注需要高效结构和能源材料的突破性途径。承载、形状变换、能量转换和自主传感特性应共存于多用途智能材料中,以释放前所未有的材料特性空间,以满足具有挑战性的需求。多功能超材料可以满足多种功能要求,并提供超越天然材料的性能。超材料无与伦比的特性主要源自其复杂的底层架构。增材制造已成为机械超材料简易制造的领跑者。 3D 打印辅助制造的多功能性还允许生产功能化的无源/有源铁电材料,以实现以前不可能的用于触觉/温度传感器和能量采集器的智能超材料。大多数超材料的理性设计都依赖于直觉。然而,调整由力学和智能材料领域组成的多功能超材料无与伦比的特性,需要了解它们的可编程性和尺寸效应特征。虽然超材料通常是周期性的,但超梁/板不具有相同水平的周期性。这些主张有必要发展一种自给自足的理论来设计多功能超材料/结构。这项研究的长期愿景是开发一个平台,用于系统而非直观地设计目标功能的超材料。作为短期目标,我们植根于细胞固体和智能材料,旨在创造可编程、可重构和尺寸相关的铁电超材料。我们从晶体对称性类中获得灵感,利用弹性不稳定性,利用多物理刺激,并利用先进制造来引入新型分类多功能超材料/结构。我们采用蜂窝结构和本构铰链的精细拓扑设计、稳定性分析、广义连续体理论、多物理场模拟、3D 打印和实验热机电表征测试。可编程和可调架构的多功能超材料/结构将为实现下一代弹性智能组件提供尖端的经济解决方案。该计划为 HQP 提供了明确的培训计划,以获得建筑超材料设计、非经典连续体建模、多尺度多物理场仿真、3D 打印和先进制造以及实验材料表征方面的独特专业知识。经过培训的熟练 HQP 最终将为智能材料创新做出贡献,并使加拿大在增材制造产品和压电设备领域保持领先地位。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

AkbarzadehShafaroudi, Abdolhamid其他文献

AkbarzadehShafaroudi, Abdolhamid的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('AkbarzadehShafaroudi, Abdolhamid', 18)}}的其他基金

Bio-inspired Hierarchical Multifunctional Metamaterials
仿生分层多功能超材料
  • 批准号:
    CRC-2019-00148
  • 财政年份:
    2022
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Canada Research Chairs
Bio-inspired Hierarchical Multifunctional Metamaterials
仿生分层多功能超材料
  • 批准号:
    CRC-2019-00148
  • 财政年份:
    2022
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Canada Research Chairs
Advanced Multifunctional and Multiphysics Metamaterials for Mechanical Element Design
用于机械元件设计的先进多功能和多物理超材料
  • 批准号:
    RGPIN-2016-04716
  • 财政年份:
    2021
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Discovery Grants Program - Individual
Advanced Multifunctional and Multiphysics Metamaterials for Mechanical Element Design
用于机械元件设计的先进多功能和多物理超材料
  • 批准号:
    RGPIN-2016-04716
  • 财政年份:
    2021
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Discovery Grants Program - Individual
Bio-Inspired Hierarchical Multifunctional Metamaterials
仿生分层多功能超材料
  • 批准号:
    CRC-2019-00148
  • 财政年份:
    2021
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Canada Research Chairs
Optimized Design of 3D Printed Lightweight Architected Shellular Materials
3D 打印轻质建筑贝壳材料的优化设计
  • 批准号:
    543334-2019
  • 财政年份:
    2021
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Collaborative Research and Development Grants
Bio-Inspired Hierarchical Multifunctional Metamaterials
仿生分层多功能超材料
  • 批准号:
    CRC-2019-00148
  • 财政年份:
    2021
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Canada Research Chairs
Optimized Design of 3D Printed Lightweight Architected Shellular Materials
3D 打印轻质建筑贝壳材料的优化设计
  • 批准号:
    543334-2019
  • 财政年份:
    2021
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Collaborative Research and Development Grants
Bio-inspired Hierarchical Multifunctional Metamaterials
仿生分层多功能超材料
  • 批准号:
    CRC-2019-00148
  • 财政年份:
    2020
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Canada Research Chairs
Advanced Multifunctional and Multiphysics Metamaterials for Mechanical Element Design
用于机械元件设计的先进多功能和多物理超材料
  • 批准号:
    RGPIN-2016-04716
  • 财政年份:
    2020
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

基于缓释工程化囊泡的衰老细胞靶向型真皮支架构筑及其促糖尿病创面愈合机制研究
  • 批准号:
    82372526
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
全新架构电动商用车滑板式底盘车架与电池仓一体化轻量化与疲劳寿命优化设计方法研究
  • 批准号:
    52372353
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
面向空域响应反馈架构的射频功放模型及实时线性化研究
  • 批准号:
    62301301
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
“点-轴系统”理论与“T”字型架构的提出及其体系化研究
  • 批准号:
    42371193
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
负载微波响应纳米载药颗粒的多孔钛支架构建及其多模式程序化协同治疗骨肉瘤的机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: New Polarizations of Elastic Waves in Architected Materials
职业:建筑材料中弹性波的新极化
  • 批准号:
    2341003
  • 财政年份:
    2024
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Standard Grant
Crystallographically-Architected Mechanical Metamaterials (CrystArMM)
晶体结构机械超材料 (CrystArMM)
  • 批准号:
    EP/X019470/1
  • 财政年份:
    2024
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Research Grant
Additive manufacturing-enabled micro-architected cellular composites for energy materials
用于能源材料的增材制造微架构蜂窝复合材料
  • 批准号:
    2887855
  • 财政年份:
    2023
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Studentship
CDS&E/Collaborative Research: Data-Driven Inverse Design of Additively Manufacturable Aperiodic Architected Cellular Materials
CDS
  • 批准号:
    2245298
  • 财政年份:
    2023
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Standard Grant
Design of auxetic metamaterials using deep learning
使用深度学习设计拉胀超材料
  • 批准号:
    22KJ0407
  • 财政年份:
    2023
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了