Noncommutative Function Theory and Multivariable Operator Theory

非交换函数论和多变量算子理论

基本信息

  • 批准号:
    418585-2012
  • 负责人:
  • 金额:
    $ 1.24万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2017
  • 资助国家:
    加拿大
  • 起止时间:
    2017-01-01 至 2018-12-31
  • 项目状态:
    已结题

项目摘要

The field of operator theory originated with physicists in the early part of the 20th century as a mathematical framework for modeling phenomenon in quantum mechanics, and it has since become a fundamental component of modern theoretical physics. Operator theory has also become an indispensable part of the mathematical landscape, with important connections to other areas in mathematics. It is these connections that have increasingly become the focus of modern operator theory.My research concerns multivariable operator theory, which is the study of more than one operator at a time. To date, most of the research in multivariable operator theory has focused on the theory of families of commuting operators, where there are deep connections to classical areas of mathematics like function theory, commutative algebra and algebraic geometry. However, in recent years, there has been a great deal of interest in developing noncommutative analogues of these classical areas. It is natural to expect that there should be similarly deep connections between these new developments and the theory of noncommuting families of operators.Classical commutative mathematics guides our intuition and motivates our development of noncommutative mathematics. However, the perspective we gain from working in the noncommutative setting also gives us a better understanding of the commutative setting. My proposal concerns this interplay between the commutative and the noncommutative in the area of multivariable operator theory.
算子理论领域起源于 20 世纪初期的物理学家,作为量子力学现象建模的数学框架,从此成为现代理论物理学的基本组成部分。算子理论也已成为数学领域不可或缺的一部分,与数学的其他领域有着重要的联系。正是这些联系日益成为现代算子理论的焦点。我的研究涉及多变量算子理论,即同时研究多个算子。迄今为止,多变量算子理论的大部分研究都集中在交换算子族理论上,该理论与函数论、交换代数和代数几何等数学经典领域有着深厚的联系。然而,近年来,人们对开发这些经典领域的非交换类似物产生了很大的兴趣。很自然地期望这些新发展与非交换算子族理论之间应该存在类似的深刻联系。经典交换数学指导我们的直觉并激励我们非交换数学的发展。然而,我们从非交换环境中获得的视角也让我们对交换环境有了更好的理解。我的建议涉及多变量算子理论领域中交换律和非交换律之间的相互作用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kennedy, Matthew其他文献

Dialister pneumosintes and aortic graft infection - a case report.
  • DOI:
    10.1186/s12879-023-08584-3
  • 发表时间:
    2023-09-19
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Patel, Rachel;Chong, Debra S. T.;Guy, Alison J.;Kennedy, Matthew
  • 通讯作者:
    Kennedy, Matthew
Dynamical effects of calcium-sensitive potassium currents on voltage and calcium alternans.
钙敏感钾电流对电压和钙交替的动态影响。
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kennedy, Matthew;Bers, Donald M;Chiamvimonvat, Nipavan;Sato, Daisuke
  • 通讯作者:
    Sato, Daisuke
The roles of inflammation and immune mechanisms in Alzheimer's disease.
炎症和免疫机制在阿尔茨海默病中的作用。
  • DOI:
  • 发表时间:
    2016-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Van Eldik, Linda J;Carrillo, Maria C;Cole, Patricia E;Feuerbach, Dominik;Greenberg, Barry D;Hendrix, James A;Kennedy, Matthew;Kozauer, Nick;Margolin, Richard A;Molinuevo, José L;Mueller, Reinhold;Ransohoff, Richard M;Wilcock, Donna M;Bain, Li
  • 通讯作者:
    Bain, Li

Kennedy, Matthew的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kennedy, Matthew', 18)}}的其他基金

Operator Algebras Associated to Groups and Noncommutative Convexity
与群和非交换凸性相关的算子代数
  • 批准号:
    RGPIN-2018-05191
  • 财政年份:
    2022
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Operator Algebras Associated to Groups and Noncommutative Convexity
与群和非交换凸性相关的算子代数
  • 批准号:
    RGPIN-2018-05191
  • 财政年份:
    2022
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Operator Algebras Associated to Groups and Noncommutative Convexity
与群和非交换凸性相关的算子代数
  • 批准号:
    RGPIN-2018-05191
  • 财政年份:
    2021
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Operator Algebras Associated to Groups and Noncommutative Convexity
与群和非交换凸性相关的算子代数
  • 批准号:
    RGPIN-2018-05191
  • 财政年份:
    2021
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Operator Algebras Associated to Groups and Noncommutative Convexity
与群和非交换凸性相关的算子代数
  • 批准号:
    RGPIN-2018-05191
  • 财政年份:
    2020
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Operator Algebras Associated to Groups and Noncommutative Convexity
与群和非交换凸性相关的算子代数
  • 批准号:
    RGPIN-2018-05191
  • 财政年份:
    2020
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Operator algebras associated to groups and noncommutative convexity
与群和非交换凸性相关的算子代数
  • 批准号:
    522716-2018
  • 财政年份:
    2019
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Operator Algebras Associated to Groups and Noncommutative Convexity
与群和非交换凸性相关的算子代数
  • 批准号:
    RGPIN-2018-05191
  • 财政年份:
    2019
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Operator algebras associated to groups and noncommutative convexity
与群和非交换凸性相关的算子代数
  • 批准号:
    522716-2018
  • 财政年份:
    2019
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Operator Algebras Associated to Groups and Noncommutative Convexity
与群和非交换凸性相关的算子代数
  • 批准号:
    RGPIN-2018-05191
  • 财政年份:
    2019
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

直流GIS绝缘子介电功能梯度化设计理论及电场调控方法研究
  • 批准号:
    52307181
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
材料和温度不均匀性相关的功能梯度复合板壳精化高阶理论研究
  • 批准号:
    12302174
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于功能性纳米示踪剂的裂隙岩体多物理场表征理论模型与反演方法
  • 批准号:
    52378352
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于“阳中求阴”理论探讨何氏养巢方重塑线粒体稳态改善颗粒细胞焦亡治疗早发性卵巢功能不全的机制研究
  • 批准号:
    82305296
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
双功能磁性材料调控锂空电池LiO2歧化机制的理论探索
  • 批准号:
    22308096
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Free Analysis: Exploring the Interactions between Operator Theory and Noncommutative Function Theory
自由分析:探索算子理论与非交换函数论之间的相互作用
  • 批准号:
    2154494
  • 财政年份:
    2022
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Standard Grant
Noncommutative Function Theory and Multivariable Operator Theory
非交换函数论和多变量算子理论
  • 批准号:
    418585-2012
  • 财政年份:
    2016
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Noncommutative Function Theory and Multivariable Operator Theory
非交换函数论和多变量算子理论
  • 批准号:
    418585-2012
  • 财政年份:
    2016
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Noncommutative Function Theory and Multivariable Operator Theory
非交换函数论和多变量算子理论
  • 批准号:
    418585-2012
  • 财政年份:
    2015
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Noncommutative Function Theory and Multivariable Operator Theory
非交换函数论和多变量算子理论
  • 批准号:
    418585-2012
  • 财政年份:
    2015
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了