Operator Algebras Associated to Groups and Noncommutative Convexity
与群和非交换凸性相关的算子代数
基本信息
- 批准号:RGPIN-2018-05191
- 负责人:
- 金额:$ 2.55万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2019
- 资助国家:加拿大
- 起止时间:2019-01-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Beginning with the work of von Neumann on the mathematical foundations of quantum physics, mathematicians have found it profitable to view various structures arising in the theory of operator algebras as noncommutative counterparts of classical mathematical objects. This philosophy underlies my work, which spans a wide range of topics within the field of operator algebras. My most significant recent work is concentrated in two areas: the structure of operator algebras associated to groups and the structure of noncommutative convex sets.***The first major component of my proposal concerns the structure of operator algebras associated to groups and dynamical systems. On the one hand, group-theoretic constructions of operator algebras provide a valuable source of examples and questions. On the other hand, it is becoming increasingly clear that many problems about the analytic structure of groups and dynamical systems are most naturally studied within an operator-algebraic framework. The fundamental problem considered in my research is how to relate properties of the group or dynamical system to properties of the corresponding operator algebra.***The second major component of my proposal concerns the theory of noncommutative convexity. In 1969, motivated by groundbreaking work on the structure of convex sets in infinite dimensional spaces, Arveson proposed a theory of noncommutative convexity as a framework for the study of objects arising from noncommutative mathematics. Despite the enormous potential of these ideas, they went undeveloped for many years until recent breakthroughs, the first by Arveson himself and the second by current author in joint work with K.R. Davidson. I plan to continue developing these ideas, which have already been applied with great success to problems in fields like quantum information theory, group theory and semidefinite optimization.
从冯·诺依曼在量子物理学的数学基础上的工作开始,数学家发现将算子代数理论中出现的各种结构视为经典数学对象的非交换对应物是有利的。这一哲学是我的工作的基础,它涵盖了算子代数领域的广泛主题。我最近最重要的工作集中在两个领域:与群相关的算子代数的结构和非交换凸集的结构。***我提案的第一个主要组成部分涉及与群和动力系统相关的算子代数的结构。一方面,算子代数的群论构造提供了有价值的示例和问题来源。另一方面,越来越清楚的是,关于群和动力系统的分析结构的许多问题是在算子代数框架内最自然地研究的。我的研究考虑的基本问题是如何将群或动力系统的性质与相应算子代数的性质联系起来。***我的建议的第二个主要组成部分涉及非交换凸性理论。 1969 年,受无限维空间中凸集结构的开创性工作的推动,Arveson 提出了非交换凸性理论,作为研究由非交换数学产生的对象的框架。尽管这些想法潜力巨大,但它们多年来一直没有得到发展,直到最近取得突破,第一个突破是由阿维森本人实现的,第二个突破是由当前作者与 K.R. 共同完成的。戴维森。我计划继续发展这些想法,这些想法已经成功地应用于量子信息论、群论和半定优化等领域的问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kennedy, Matthew其他文献
The roles of inflammation and immune mechanisms in Alzheimer's disease.
炎症和免疫机制在阿尔茨海默病中的作用。
- DOI:
- 发表时间:
2016-06 - 期刊:
- 影响因子:0
- 作者:
Van Eldik, Linda J;Carrillo, Maria C;Cole, Patricia E;Feuerbach, Dominik;Greenberg, Barry D;Hendrix, James A;Kennedy, Matthew;Kozauer, Nick;Margolin, Richard A;Molinuevo, José L;Mueller, Reinhold;Ransohoff, Richard M;Wilcock, Donna M;Bain, Li - 通讯作者:
Bain, Li
Dialister pneumosintes and aortic graft infection - a case report.
- DOI:
10.1186/s12879-023-08584-3 - 发表时间:
2023-09-19 - 期刊:
- 影响因子:3.7
- 作者:
Patel, Rachel;Chong, Debra S. T.;Guy, Alison J.;Kennedy, Matthew - 通讯作者:
Kennedy, Matthew
Dynamical effects of calcium-sensitive potassium currents on voltage and calcium alternans.
钙敏感钾电流对电压和钙交替的动态影响。
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Kennedy, Matthew;Bers, Donald M;Chiamvimonvat, Nipavan;Sato, Daisuke - 通讯作者:
Sato, Daisuke
Kennedy, Matthew的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kennedy, Matthew', 18)}}的其他基金
Operator Algebras Associated to Groups and Noncommutative Convexity
与群和非交换凸性相关的算子代数
- 批准号:
RGPIN-2018-05191 - 财政年份:2022
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
Operator Algebras Associated to Groups and Noncommutative Convexity
与群和非交换凸性相关的算子代数
- 批准号:
RGPIN-2018-05191 - 财政年份:2022
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
Operator Algebras Associated to Groups and Noncommutative Convexity
与群和非交换凸性相关的算子代数
- 批准号:
RGPIN-2018-05191 - 财政年份:2021
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
Operator Algebras Associated to Groups and Noncommutative Convexity
与群和非交换凸性相关的算子代数
- 批准号:
RGPIN-2018-05191 - 财政年份:2021
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
Operator Algebras Associated to Groups and Noncommutative Convexity
与群和非交换凸性相关的算子代数
- 批准号:
RGPIN-2018-05191 - 财政年份:2020
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
Operator Algebras Associated to Groups and Noncommutative Convexity
与群和非交换凸性相关的算子代数
- 批准号:
RGPIN-2018-05191 - 财政年份:2020
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
Operator algebras associated to groups and noncommutative convexity
与群和非交换凸性相关的算子代数
- 批准号:
522716-2018 - 财政年份:2019
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Operator algebras associated to groups and noncommutative convexity
与群和非交换凸性相关的算子代数
- 批准号:
522716-2018 - 财政年份:2019
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Operator Algebras Associated to Groups and Noncommutative Convexity
与群和非交换凸性相关的算子代数
- 批准号:
RGPIN-2018-05191 - 财政年份:2018
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
Operator algebras associated to groups and noncommutative convexity
与群和非交换凸性相关的算子代数
- 批准号:
522716-2018 - 财政年份:2018
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
相似国自然基金
代数曲线在与高阶矩阵谱问题相联系的可积系统中的应用
- 批准号:11901538
- 批准年份:2019
- 资助金额:27.0 万元
- 项目类别:青年科学基金项目
与高阶矩阵谱问题相联系的孤子方程族代数几何解研究
- 批准号:11801144
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
与高阶矩阵谱问题相联系的孤子方程的可积性与代数几何解
- 批准号:11601123
- 批准年份:2016
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
量子代数和范畴化代数及其和模空间不变量的联系
- 批准号:11475116
- 批准年份:2014
- 资助金额:80.0 万元
- 项目类别:面上项目
关于复上半平面的封闭测地线的代数方程及其与Hilbert 12问题的联系
- 批准号:11426050
- 批准年份:2014
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
相似海外基金
Operator Algebras Associated to Groups and Noncommutative Convexity
与群和非交换凸性相关的算子代数
- 批准号:
RGPIN-2018-05191 - 财政年份:2022
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
Operator Algebras Associated to Groups and Noncommutative Convexity
与群和非交换凸性相关的算子代数
- 批准号:
RGPIN-2018-05191 - 财政年份:2022
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
Operator Algebras Associated to Groups and Noncommutative Convexity
与群和非交换凸性相关的算子代数
- 批准号:
RGPIN-2018-05191 - 财政年份:2021
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
Operator Algebras Associated to Groups and Noncommutative Convexity
与群和非交换凸性相关的算子代数
- 批准号:
RGPIN-2018-05191 - 财政年份:2021
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
Operator Algebras Associated to Groups and Noncommutative Convexity
与群和非交换凸性相关的算子代数
- 批准号:
RGPIN-2018-05191 - 财政年份:2020
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual