Algebraic and Geometric Aspects of Algebraic Groups and Homogeneous Varieties

代数群和齐次簇的代数和几何方面

基本信息

  • 批准号:
    RGPIN-2016-05215
  • 负责人:
  • 金额:
    $ 1.31万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2016
  • 资助国家:
    加拿大
  • 起止时间:
    2016-01-01 至 2017-12-31
  • 项目状态:
    已结题

项目摘要

My research applies techniques from representation theory, algebraic groups, Galois cohomology and algebraic geometry to a variety of problems about torsors for algebraic groups over fields and curves. 1. Birational Invariant theory for tori: We study (stable) rationality problems and more generally (stable) birational classification problems for algebraic k-tori (torsors for split tori over a field) and quotients of split tori by finite group actions. The question of whether all stably rational algebraic k tori are rational is an interesting question, open since Voskresenskii's seminal work in the 70s. The rationality problem for quotients of split tori over a finite group was first studied by Emmy Noether [N] in her work on the inverse Galois problem. We also study the (stable) birational equivariant linearisation problem for split tori equipped with the action of a finite group. This is equivalent to asking whether the finite group is conjugate in the nth Cremona group, the group of birational automorphisms of projective n space to a subgroup of linear automorphisms. The Cremona group is a very mysterious group: the Cremona group of the plane is an important object of study; not much is known for n bigger than 3. 2. Essential Dimension of Moduli stacks of G bundles Essential dimension is an important numerical invariant of G torsors, as introduced by Reichstein (2010 ICM), Buhler and Merkurjev [BR,Re,Me]. With Dhillon, we will be interested in studying the essential dimension of the moduli stack of G-bundles over a curve, an important object in mathematical physics, generalising the moduli stack of vector bundles over a curve. 3. Hall Algebras and Hall modules: A Hall algebra of a small finitary abelian category encodes the structure of extensions between isomorphism classes of its objects.Important examples of Hall algebras are those of quivers (Ringel, Green) [Ri,Gr] and for coherent sheaves over a curve (Kapranov) [Kap2] (all considered over a finite field). With Dhillon and Sala [PDF1], we are interested in determining the Hall module (introduced by Young) of symplectic/orthogonal coherent sheaves over the projective line over Kapranov's Hall algebra. 4. Twisted projective homogeneous varieties: Twisted projective homogeneous varieties are forms of projective homogeneous varieties. Examples include Severi Brauer varieties (twisted forms of projective space) and Generalised Severi Brauer varieties, twisted forms of Grassmannians. The question of torsion in Chow groups of twisted projective homogeneous varieties is an important one and not well understood. With Junkins [PDF2] and Krashen, we wish to study this question for generalised Severi Brauer varieties. Important earlier work was done by Karpenko, Merkurjev [KM] on quadrics, and Karpenko [Kar]; Baek [Ba] on Severi Brauer varieties.
我的研究将表示论、代数群、伽罗瓦上同调和代数几何等技术应用于域和曲线上代数群的 Torors 的各种问题。 1. tori的双有理不变理论: 我们研究代数 k-tori(域上分割环面的扭转量)的(稳定)理性问题和更一般的(稳定)双有理分类问题以及有限群作用的分割环面商。自 70 年代 Voskresenskii 的开创性工作以来,是否所有稳定有理代数 k tori 都是有理的问题是一个有趣的问题。 Emmy Noether [N] 在她关于逆伽罗瓦问题的研究中首次研究了有限群上分裂圆环的商的合理性问题。 我们还研究了配备有限群作用的分裂环面的(稳定)双有理等变线性化问题。这相当于询问有限群是否在第 n 个克雷莫纳群(射影 n 空间的双有理自同构群到线性自同构的子群)中共轭。克雷莫纳群是一个非常神秘的群:位面的克雷莫纳群是一个重要的研究对象;对于大于 3 的 n 知之甚少。 2. G 丛模堆的基本维数 正如 Reichstein (2010 ICM)、Buhler 和 Merkurjev [BR,Re,Me] 所介绍的,基本维数是 G 轴的一个重要的数值不变量。通过 Dhillon,我们将有兴趣研究曲线上 G 丛模堆栈的基本维数,这是数学物理中的一个重要对象,概括了曲线上向量丛的模堆栈。 3. 霍尔代数和霍尔模: 一个小的有限阿贝尔范畴的霍尔代数编码其对象的同构类之间的扩展结构。霍尔代数的重要例子是颤动的代数(林格尔,格林)[Ri,Gr]和曲线上的相干滑轮(卡普拉诺夫) [Kap2](全部在有限域上考虑)。通过 Dhillon 和 Sala [PDF1],我们有兴趣确定卡普拉诺夫霍尔代数投影线上辛/正交相干滑轮的霍尔模(由 Young 引入)。 4. 扭曲投影同质簇:扭曲投影同质簇是投影同质簇的形式。例子包括Severi Brauer簇(射影空间的扭曲形式)和广义Severi Brauer簇,Grassmannian的扭曲形式。扭曲射影齐次簇 Chow 群中的挠率问题是一个重要的问题,但尚未得到很好的理解。我们希望与 Junkins [PDF2] 和 Krashen 一起研究广义 Severi Brauer 品种的这个问题。早期的重要工作是由 Karpenko、Merkurjev [KM] 和 Karpenko [Kar] 在二次曲面上完成的; Baek [Ba] 关于 Severi Brauer 品种。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lemire, Nicole其他文献

Lemire, Nicole的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lemire, Nicole', 18)}}的其他基金

Algebraic and Geometric Aspects of Algebraic Groups and Homogeneous Varieties
代数群和齐次簇的代数和几何方面
  • 批准号:
    RGPIN-2016-05215
  • 财政年份:
    2021
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Algebraic and Geometric Aspects of Algebraic Groups and Homogeneous Varieties
代数群和齐次簇的代数和几何方面
  • 批准号:
    RGPIN-2016-05215
  • 财政年份:
    2021
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Algebraic and Geometric Aspects of Algebraic Groups and Homogeneous Varieties
代数群和齐次簇的代数和几何方面
  • 批准号:
    RGPIN-2016-05215
  • 财政年份:
    2019
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Algebraic and Geometric Aspects of Algebraic Groups and Homogeneous Varieties
代数群和齐次簇的代数和几何方面
  • 批准号:
    RGPIN-2016-05215
  • 财政年份:
    2019
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Algebraic and Geometric Aspects of Algebraic Groups and Homogeneous Varieties
代数群和齐次簇的代数和几何方面
  • 批准号:
    RGPIN-2016-05215
  • 财政年份:
    2018
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Algebraic and Geometric Aspects of Algebraic Groups and Homogeneous Varieties
代数群和齐次簇的代数和几何方面
  • 批准号:
    RGPIN-2016-05215
  • 财政年份:
    2018
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Algebraic and Geometric Aspects of Algebraic Groups and Homogeneous Varieties
代数群和齐次簇的代数和几何方面
  • 批准号:
    RGPIN-2016-05215
  • 财政年份:
    2017
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Algebraic and Geometric Aspects of Algebraic Groups and Homogeneous Varieties
代数群和齐次簇的代数和几何方面
  • 批准号:
    RGPIN-2016-05215
  • 财政年份:
    2017
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Birational invariants of algebraic groups and algebraic tori with finite group actions
具有有限群作用的代数群和代数环的双有理不变量
  • 批准号:
    229820-2010
  • 财政年份:
    2015
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Birational invariants of algebraic groups and algebraic tori with finite group actions
具有有限群作用的代数群和代数环的双有理不变量
  • 批准号:
    229820-2010
  • 财政年份:
    2015
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

基于非共面磁矩上几何相位的自旋波操控
  • 批准号:
    12374117
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
基于离散几何模型的高质量非结构曲面网格生成方法研究
  • 批准号:
    12301489
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
凸体几何中Lp仿射等周问题的研究
  • 批准号:
    12301073
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于隐式几何描述的梯度随机点阵结构多尺度建模与优化设计
  • 批准号:
    12372200
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
离散物理系统的通用几何图学习理论方法
  • 批准号:
    62376276
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目

相似海外基金

Algebraic and Geometric Aspects of Algebraic Groups and Homogeneous Varieties
代数群和齐次簇的代数和几何方面
  • 批准号:
    RGPIN-2016-05215
  • 财政年份:
    2021
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Algebraic and Geometric Aspects of Algebraic Groups and Homogeneous Varieties
代数群和齐次簇的代数和几何方面
  • 批准号:
    RGPIN-2016-05215
  • 财政年份:
    2021
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Geometric structures and combinatorial structures of 3-dimensional manifolds
3维流形的几何结构和组合结构
  • 批准号:
    20K03614
  • 财政年份:
    2020
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Geometric and algebraic aspects of Dehn surgery
Dehn 手术的几何和代数方面
  • 批准号:
    19K03502
  • 财政年份:
    2019
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Algebraic and Geometric Aspects of Algebraic Groups and Homogeneous Varieties
代数群和齐次簇的代数和几何方面
  • 批准号:
    RGPIN-2016-05215
  • 财政年份:
    2019
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了