整凸性を軸とする離散凸解析の研究
以有序凸性为中心的离散凸性分析研究
基本信息
- 批准号:23K11001
- 负责人:
- 金额:$ 2.33万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2023
- 资助国家:日本
- 起止时间:2023-04-01 至 2028-03-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
室田 一雄其他文献
岩波数学辞典第4版,(連立1次方程式の数値計算法の項目)(日本数学会編集)
岩波数学词典第4版(联立线性方程数值计算方法条目)(日本数学会编)
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
張 紹良;杉原 正顯;室田 一雄 - 通讯作者:
室田 一雄
A Proof of the M-Convex Intersection Theorem (ゲーム理論、数理経済学への離散凸解析の応用 短期共同研究報告集)
M-凸交集定理的证明(离散凸分析在博弈论和数理经济学中的应用短期联合研究报告合集)
- DOI:
- 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
室田 一雄 - 通讯作者:
室田 一雄
岩波数学辞典第4版,(固有値の数値計算法の項目)(日本数学会編集)
岩波数学词典第4版(特征值的数值计算方法条目)(日本数学会编)
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
速水 謙;室田 一雄 - 通讯作者:
室田 一雄
室田 一雄的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('室田 一雄', 18)}}的其他基金
離散凸解析による資源配分問題の研究
基于离散凸分析的资源分配问题研究
- 批准号:
20K11697 - 财政年份:2020
- 资助金额:
$ 2.33万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
双対性がもたらす多視点モデル化:数学原理からシステム設計へ
对偶性带来的多视图建模:从数学原理到系统设计
- 批准号:
19656103 - 财政年份:2007
- 资助金额:
$ 2.33万 - 项目类别:
Grant-in-Aid for Exploratory Research
離散構造の凸近似に関する研究
离散结构凸逼近研究
- 批准号:
16654019 - 财政年份:2004
- 资助金额:
$ 2.33万 - 项目类别:
Grant-in-Aid for Exploratory Research
離散最適化における準凸性の理論の構築と社会工学への応用
离散优化半凸理论构建及其在社会工程中的应用
- 批准号:
13874016 - 财政年份:2001
- 资助金额:
$ 2.33万 - 项目类别:
Grant-in-Aid for Exploratory Research
生産システム設計への組合せ凸解析の応用
组合凸分析在生产系统设计中的应用
- 批准号:
11878069 - 财政年份:1999
- 资助金额:
$ 2.33万 - 项目类别:
Grant-in-Aid for Exploratory Research
離散凸解析の社会科学への展開
社会科学中离散凸分析的发展
- 批准号:
10874018 - 财政年份:1998
- 资助金额:
$ 2.33万 - 项目类别:
Grant-in-Aid for Exploratory Research
数理計画法における離散凸性の研究
数学规划中的离散凸性研究
- 批准号:
08650078 - 财政年份:1996
- 资助金额:
$ 2.33万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
分岐の数値解析における精度保証の研究
分支数值分析精度保证研究
- 批准号:
07650077 - 财政年份:1995
- 资助金额:
$ 2.33万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
組合せ理論と群表現論に基づく大規模システムの構造解析手法の研究
基于组合理论和群表示理论的大规模系统结构分析方法研究
- 批准号:
05650064 - 财政年份:1993
- 资助金额:
$ 2.33万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
相似海外基金
Research on Discrete Convex Analysis Approach for Robust Nonlinear Integer Programming Problems
鲁棒非线性整数规划问题的离散凸分析方法研究
- 批准号:
18K11177 - 财政年份:2018
- 资助金额:
$ 2.33万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Scaling and proximity properties of discrete optimization
离散优化的缩放和邻近属性
- 批准号:
17K00037 - 财政年份:2017
- 资助金额:
$ 2.33万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of Approximation Algorithms with Theoretical Guarantee for Integer Programming Problem with Nonlinear Constraint
具有理论保证的非线性约束整数规划问题逼近算法的发展
- 批准号:
24500002 - 财政年份:2012
- 资助金额:
$ 2.33万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on Practical Algorithms for Nonlinear Integer Programs Based on Discrete Convex Analysis Approach
基于离散凸分析法的非线性整数规划实用算法研究
- 批准号:
18740042 - 财政年份:2006
- 资助金额:
$ 2.33万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
離散構造の凸近似に関する研究
离散结构凸逼近研究
- 批准号:
16654019 - 财政年份:2004
- 资助金额:
$ 2.33万 - 项目类别:
Grant-in-Aid for Exploratory Research