Quantum mechanical simulation of current noise of nanoscale double-gate MOSFETs

纳米级双栅 MOSFET 电流噪声的量子力学模拟

基本信息

  • 批准号:
    17560308
  • 负责人:
  • 金额:
    $ 1.92万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2005
  • 资助国家:
    日本
  • 起止时间:
    2005 至 2006
  • 项目状态:
    已结题

项目摘要

In this research project, we have studied the current noise characteristics of nano-scale MOS devices by employing the quantum transport models based upon the nonequilibrium Green's function model (NEGF) and the quantum corrected Monte Carlo (MC) device simulation.1. Nonequilibrium Green's function modelThe NEGF is used to study the shot noise suppression caused by the quantum mechanical correlations of electrons in semiconductor nano-scale devices, so that the current noise is discussed at low temperature. It was considered interesting to apply the NEGF models to the study of shot noise in ballistic nano-scale Si-MOSFETs, where correlations of electrons are expected to exist when the three dimensional electrons in the various shape of electrodes are injected into the inversion layer of the channel and confined to quantized subbands as the so-called two-dimensional electron gases. It is found from the NEGF simulation that the drain current noise is always suppressed below the full Pois … More sonian value partly due to the Fermi correlation and partly due to the partition noise of electrons injected from the electrodes. Further, the current noise to average current ratio (Fano-factor) is found to be suppressed strongly with the increase of gate bias and the decrease of operating temperature.2. Quantum corrected Monte Carlo modelThe quantum corrected MC model has been developed to simulate practical semiconductor devices at normal temperatures, and applied to the study of the current fluctuations of a nano-scale double-gate Si-MOSFET. The quantum mechanical effects are incorporated in terms of a quantum correction of potential in this particle model. It is shown that the incorporation of the ellipsoidal multi-valleys of silicon conduction band and energy quantization effects are important to analyze the current noise in ultra small Si-MOSFETs. As a result, it is found that the fractional deviation of current noise never increase s but decreases a little even if the channel length is reduced to less than a few ten nanometers. Less
在该研究项目中,我们通过使用基于非平衡绿色功能模型(NEGF)和量子校正后的蒙特卡洛(MC)设备模拟的量子传输模型来研究纳米级MOS设备的当前噪声特性。1。绿色的功能模型非平衡的NEGF用于研究由半导体纳米级设备中电子的量子机械相关性引起的射击噪声,因此在低温下讨论了当前的噪声。将NEGF模型应用于弹道纳米尺度Si-MoSFET中的射击噪声的研究被认为是有趣的,当将电子的三维电子以各种电子形式注入通道的反转层并将其限于量化的子带作为所谓的二维电子气体时,预计电子的相关性将存在。从negf模拟中发现,漏气电流始终在全pois以下抑制……更多的是由于费米相关性,部分原因是由于电子从电子中注入的电子的分配噪声。此外,发现电流噪声与平均电流比(FANO因子)随着栅极偏置的增加和工作温度降低而受到强烈抑制。2。量子校正后的蒙特卡洛模型已开发出量子校正的MC模型,以模拟正常温度下的实用半导体设备,并应用于研究纳米级双门SI-MOSFET的当前波动。量子机械效应是根据该粒子模型中电势的量子校正来纳入的。结果表明,硅传导带的椭圆形多阀的掺入和能量量化效应对于分析超小Si-MoSFET中的当前噪声很重要。结果,发现当前噪声的分数离发不会增加S,但即使频道长度降低到小于几十纳米,也会减小一点。较少的

项目成果

期刊论文数量(23)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Quantum-Corrected Monte Carlo Study on Quasi-Ballistic Transport in Nanoscale MOSFETs
  • DOI:
    10.1109/ted.2006.885672
  • 发表时间:
    2006-11
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    H. Tsuchiya;K. Fujii;T. Mori;T. Miyoshi
  • 通讯作者:
    H. Tsuchiya;K. Fujii;T. Mori;T. Miyoshi
A First Principles Study on Electronic Band Structures of Nano-Scaled SOI Films
纳米级SOI薄膜电子能带结构的第一性原理研究
巻頭言 デバイスシミュレーションのパラダイムシフト
前言 器件仿真的范式转变
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    和田光司;谷井宏成;西村太;笹部孝司;植野嘉章;岩崎俊;H.Tsuchiya;三好旦六
  • 通讯作者:
    三好旦六
A Picture of Quasi-Ballistic Transport in Nanoscale MOSFETs
纳米级 MOSFET 中的准弹道输运图
Comparison of Non-Equilibrium Green's Function and Quantum-Corrected Monte Carlo Approaches in Nano MOS Simulation
纳米 MOS 仿真中非平衡格林函数与量子校正蒙特卡罗方法的比较
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MIYOSHI Tanroku其他文献

MIYOSHI Tanroku的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MIYOSHI Tanroku', 18)}}的其他基金

Research of current fluctuations of nanoscaled MOSFETs based upon quantum transport models
基于量子输运模型的纳米MOSFET电流涨落研究
  • 批准号:
    15560296
  • 财政年份:
    2003
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似国自然基金

量子点光催化产CO增敏肿瘤免疫/光热多模式联合治疗
  • 批准号:
    52002054
  • 批准年份:
    2020
  • 资助金额:
    16.0 万元
  • 项目类别:
    青年科学基金项目
BDNF-TrkB信号囊泡的正向运输促进神经元轴突的发育
  • 批准号:
    31271139
  • 批准年份:
    2012
  • 资助金额:
    90.0 万元
  • 项目类别:
    面上项目

相似海外基金

Formation mechanism and transport properties of carbon nanotube molecular junctions by chirality transformation
手性变换碳纳米管分子结的形成机制及输运特性
  • 批准号:
    23H01796
  • 财政年份:
    2023
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Quantum magnetic and thermal transport by pi-electron spin
π电子自旋的量子磁和热传输
  • 批准号:
    23K17906
  • 财政年份:
    2023
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Machine-learning quantum surrogate models to simulate energy transport across interfaces
机器学习量子替代模型来模拟跨界面的能量传输
  • 批准号:
    2886134
  • 财政年份:
    2023
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Studentship
Quantum transport study of axion dynamics in magnetic topological systems
磁拓扑系统中轴子动力学的量子输运研究
  • 批准号:
    22KF0111
  • 财政年份:
    2023
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Catalytically Generated Amidyl Radicals for Site-Selective Intermolecular C-H Functionalization
催化生成酰胺自由基用于位点选择性分子间 C-H 官能化
  • 批准号:
    10679463
  • 财政年份:
    2023
  • 资助金额:
    $ 1.92万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了