Study on Regularity and Singularity of a weak solution to the m-harmonic maps and the evolution

m调和映射弱解的正则性和奇异性及其演化研究

基本信息

  • 批准号:
    17540199
  • 负责人:
  • 金额:
    $ 2.24万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2005
  • 资助国家:
    日本
  • 起止时间:
    2005 至 2006
  • 项目状态:
    已结题

项目摘要

We obtain the following results and try to publish the papers in some Journal.(1) Free boundary problem for m-harmonic maps and m-harmonic map flowWe show the existence of the local in time solution of the m-harmonic map flow into smooth compact manifold with free boundary on a closed submanifold of the target manifold, which satisfies the m-harmonic map flow equation in the weak sense and is H"older continuous with its gradient in time-space region up to the boundary of the space domain. The maximal existence time of the solution is estimated below by the m-energy of the initial datum. Also, the singular behavior of the solution at the singular time (maximal existence time) can be characterized by a non-constant m-harmonic maps into the target manifold. The m-harmonic map is defined on m-dimensional sphere, or m-dimensional ball with free boundary, and they are called m-harmonic sphere, or m-harmonic disk, respectively. These solutions are exactly minimal submanifolds in the target manifold.(2) Finite singularity of the m-harmonic map flowIt is expected that the singular set at the singular time is consist of finitely many points. In the paper, we make device of some formula and try to prove the conjecture. However, we are faced with a serious gap of the proof., which is now studied by us to be overcome. We obtain the formula which says the monotonicity of the scaled energy in the intrinsic way to the m-harmonic Laplace operator and is of its own interest.(3) A priori estimates for the linearized parabolic system of non-divergence formWe show the a priori estimates in some Sobolev space hold for the linearized parabolic system of the m-harmonic map flow and the existence of a strong solution of the system. The existence result is combined with the Leray-Schauder fixed point theorem aid the reflection method to show the local in time solution of the m-harmonic map flow with free boundary.
我们获得以下结果并尝试在某些期刊中发布论文。(1)M-Harmonic Maps和M-Harmonic Map Flowwe的自由边界问题显示,M-Harmonic地图的时间解决方案存在于M-Harmonic Map流量的时代解决方案中。在目标歧管的闭合子曼群上具有自由边界的紧凑型歧管,在弱意义上满足M谐波映射方程,并且在较大的时间空间区域中较老,直到其在空间域的边界上。下面的最大存在时间是通过初始基准的M能量估计的,在单数时间(最大存在时间)的奇异行为可​​以通过非恒定的M-Harmonic图来表征目标歧管。目标歧管。(2)M-Harmonic Map Flowit的有限奇异性预计,在单数时,奇异集由有限的多点组成。在论文中,我们制作了某种公式的设备,并试图证明猜想。但是,我们面临着严重的证据差距。我们获得了一个公式,该公式说以固有方式到达M谐波laplace操作员的单调性,并且具有其自身利益。(3)对非差异形式的线性性抛物线系统的先验估计,我们表明先验某些Sobolev空间中的估计值适用于M谐波映射流的线性化抛物线系统以及系统的强溶液的存在。存在结果与Leray-Schauder固定点定理结合使用的反射方法,以显示具有自由边界的M谐波映射流的局部解决方案。

项目成果

期刊论文数量(23)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A diffused interface whose chemical potential lies in Sobolev spaces
化学势位于索博列夫空间的扩散界面
Partial regularity for a selective smoothing functional for image restoration in BV space
BV 空间中图像恢复的选择性平滑函数的部分正则性
Cauchy-free boundary problem of the evolution of the m-harmonic maps (preprint).
m 调和映射演化的柯西自由边界问题(预印本)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chen;Yunmei;Rao;M.;Tonegawa;Y.;Wunderli;Masashi Misawa;Masashi Misawa
  • 通讯作者:
    Masashi Misawa
Sharp-interface limit of the Allen-Cahn action functional in one space dimension
一维艾伦-卡恩作用泛函的锐界面极限
A variational problem for affine connections
仿射连接的变分问题
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kohn Robert V.;Reznikoff Maria G.;Yoshihiro Tonegawa;Tohru Nakajima;Osamu Kobayashi
  • 通讯作者:
    Osamu Kobayashi
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MISAWA Masashi其他文献

MISAWA Masashi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MISAWA Masashi', 18)}}的其他基金

A regularity criterion for the harmonic map flows and asymptotic analysis for singularity
调和映射流的正则判据和奇点的渐近分析
  • 批准号:
    21540222
  • 财政年份:
    2009
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Mathematical research on regularity and singularity for the m-harmonic map flows and energy quantization phenomenon
调和图流规律性与奇异性及能量量子化现象的数学研究
  • 批准号:
    19540221
  • 财政年份:
    2007
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study on Regularity and Singularity of Minimal Surfaces in Higher Dimensions and The Evolution
高维极小曲面的正则性、奇异性及其演化研究
  • 批准号:
    15540210
  • 财政年份:
    2003
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了