study of time periodic solutions to the equations of gas dynamics
气体动力学方程时间周期解的研究
基本信息
- 批准号:17540161
- 负责人:
- 金额:$ 1.15万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2005
- 资助国家:日本
- 起止时间:2005 至 2006
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Originally this study started with the problem of nonlinear stability of the equilibria governed by the spherically symmetric Euler-Poisson equation of barotropic gas provided that the adiabatic exponent is greater than 4/3. The conjecture is that there exist time periodic solutions around these equilibria.In order to clarify the essential points of the problem, we studied 1-dimensional movement of gas under a constant gravitatuional force, and proved that the linearized equation of the perturbations from the equilibria admits time periodic solutions which are described by the Besssel functions. Moreover we clarified a property of smooth periodic solutions, if exist, of the fully nonlinear equation. The existence of periodic solutions to the fully nonlinear equations is still open.The problem is a free boundary problem at the interface with the vacuum, we have great difficulty in the theoretical consideration,. So, we studied the 1-dimensional movement of gas without exterior forces. The equilibria are constant density, and the eqwuation of the perturbation from the equilibria is a quasilinear wave equation, whose coeeeficients are regular at both boundaries. We proved there are no smooth periodic solutions for this fully nonlinear equation. Special cases about time periodic solutions to quasilinear wave equations are done by Greenberg, Rascal et al., but the tipe of equations arising from the gasdynamicas has no results. But there are possibility to show the existence of periodic solutions to these quasilinear gave equations applyinf the discussion by Rabinowitz, Brezis, Coron, Nirebnberg, craig, Wayne on the semilinear wave equations. We are now in the step of the study.
最初,这项研究始于由面向对称的欧拉 - 波森方程(如果绝热指数大于4/3,则由球形对称的Euler-Poisson方程)开始。猜想是在这些平衡周围存在时间周期性解决方案。为了阐明问题的要点,我们研究了气体在恒定引力力下的一维运动,并证明了从平衡的扰动的线性方程承认贝塞尔函数描述的时间周期性解决方案。此外,我们阐明了完全非线性方程的平滑周期解决方案(如果存在)的属性。完全非线性方程的定期解决方案仍然是开放的。问题是与真空接口处的自由边界问题,在理论考虑中,我们有很大的困难。因此,我们研究了没有外部力的气体的一维运动。平衡是恒定的密度,而均衡的扰动的升级是一种准线性波方程,其卵性在两个边界上都是规则的。我们证明没有针对该完全非线性方程的平滑周期解决方案。 Greenberg,Rascal等人对准线性波方程的时间周期性解决方案进行了特殊情况,但是由Gasdynamicas产生的方程式的tipe是没有结果。但是,有可能显示这些准线性的周期性解决方案的存在,使方程在半线性波方程上对Rabinowitz,Brezis,Coron,Nirebnberg,Craig,Craig,Wayne进行了讨论。我们现在正在研究。
项目成果
期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Lyapunov stability of the N-soliton solutions in the Lax hierarchy of the Benjamin-Ono equation
Benjamin-Ono 方程 Lax 层次中 N-孤子解的 Lyapunov 稳定性
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:Yoshihiro Shibata;Senjo Shimizu;T.Makino;T.Makino;Y.Matsuno;Y.Matsuno
- 通讯作者:Y.Matsuno
Cusp and loop soliton solutions of the short-wave models for the Camassa-Holn and Degasperis-Procesi equations
Camassa-Holn 和 Degasperis-Procesi 方程的短波模型的尖点和环孤子解
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:Yoshihiro Shibata;Senjo Shimizu;T.Makino;T.Makino;Y.Matsuno
- 通讯作者:Y.Matsuno
Cusp and loop soliton solutions of the short-wave medels for the Camassa-Holn and Degasperis-Procesi equations
Camassa-Holn 和 Degasperis-Procesi 方程的短波模型的尖点和环孤子解
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:Yoshihiro Shibata;Senjo Shimizu;T.Makino;T.Makino;Y.Matsuno;Y.Matsuno;T.Makino;Y.Matsuno;Y.Matsuno;T.Makino;Y.Matsuno
- 通讯作者:Y.Matsuno
The N-soliton solution of the Degasperis-Procesi equation
Degasperis-Procesi 方程的 N 孤子解
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:Yoshihiro Shibata;Senjo Shimizu;T.Makino;T.Makino;Y.Matsuno;Y.Matsuno;T.Makino;Y.Matsuno;Y.Matsuno;T.Makino;Y.Matsuno;Y.Matsuno;Y.Matsuno;Y.Matsuno;Y.Matsuno
- 通讯作者:Y.Matsuno
Smooth solutions to a class of squasilinear wave equations
一类拟线性波动方程的光滑解
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:Yoshihiro Shibata;Senjo Shimizu;T.Makino;T.Makino;Y.Matsuno;Y.Matsuno;T.Makino
- 通讯作者:T.Makino
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MAKINO Tetu其他文献
MAKINO Tetu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Regularity and Stability for Solutions of Quasilinear Wave Equations with Singularities
具有奇异性的拟线性波动方程解的正则性和稳定性
- 批准号:
2206218 - 财政年份:2022
- 资助金额:
$ 1.15万 - 项目类别:
Continuing Grant
Regularity Theory for Degenerate Quasilinear Wave Equations and its Applications
简并拟线性波动方程的正则理论及其应用
- 批准号:
19K14573 - 财政年份:2019
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Research of global behavior of classical solutions for quasilinear Wave equations
拟线性波动方程经典解的全局行为研究
- 批准号:
20540206 - 财政年份:2008
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Quasilinear Wave Equations, Membranes and Supermembranes (A04)
拟线性波动方程、膜和超膜 (A04)
- 批准号:
5444866 - 财政年份:2005
- 资助金额:
$ 1.15万 - 项目类别:
Collaborative Research Centres