Study on characteristic numbers of G-manifolds and its fixed points submanifolds

G流形及其不动点子流形特征数研究

基本信息

  • 批准号:
    17540082
  • 负责人:
  • 金额:
    $ 2.18万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2005
  • 资助国家:
    日本
  • 起止时间:
    2005 至 2006
  • 项目状态:
    已结题

项目摘要

1. The cut-and-paste operation defines an equivalence relation on the set of smooth G-manifolds, G a compact Lie group. This relation is called SK-equivalence. The set of SK-equivalence classes becomes a semiring with the addition induced from the disjoint union and the product induced from the Cartesian product of two of G-manifolds. Its Grothendieck ring is called the SK-ring of G-manifolds. We obtain a necessary and sufficient condition for the decomposability in the SK-ring, if G is the cyclic group of order 2. Here the decomposability means for a given G-manifold to be Sk-equivalent to the product of two G-manifolds with a lower dimension than M. The condition is obtained in terms of the Euler characteristics of G-manifolds and its fixed points submanifolds.2. For a closed subgroup H of G, M^H denotes the fixed points submanifold of M by the restricted H-action. We already know various types of arithmetic congruences for the Euler characteristics of G-manifold and its fixed points submanoifolds. Making use of these results we obtain the following facts: if G is abelian, M is of odd-dimension, and M^G is of 0-dimension, i.e., M^G consists of finite isolated fixed points, then the number of points of M^G is even. Moreover, if the index 2 subgroup H of G is unique, then the tangential representations at fixed points are pairwisely isomorphic to each other as representations of H.
1。剪切操作定义了平滑的G-manifolds集合的等效关系,g一个紧凑的谎言组。这种关系称为SK等效性。 Sk-queragence类别的集合成为了一个半度性,并从脱节联合引起的添加以及由两个G-manifolds的笛卡尔产物引起的产物。它的Grothendieck戒指称为G-Manifolds的Sk-Ring。如果G是循环第2阶的环状组,我们就会获得必要且充分的条件,以使给定的G-manifold与两个尺寸较低的G-manifolds的产物相等。与M相当。对于G的闭合子组H,M^H表示由限制的H-Action表示M的固定点子量。我们已经知道各种类型的算术一致性对于G-manifold及其固定点submanoifolds的Euler特性。利用这些结果,我们得到以下事实:如果G是Abelian,则M具有奇数,M^g为0维,即M^g由有限的隔离固定点组成,则M^G的点数均匀。此外,如果G的索引2子组H是唯一的,则固定点处的切向表示形式是彼此作为H的表示形式的。

项目成果

期刊论文数量(17)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Stable homotopy groups of spheres and higher singularities
球体的稳定同伦群和更高奇点
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    N.Iwase;M.Mimura;T.Nishimoto;S.Okuyama;島川和久;Kohhei Yamaguchi;Kohhei Yamaguchi;Shigo Okuyama;Yoshifumi Ando;Yoshifumi Ando
  • 通讯作者:
    Yoshifumi Ando
Nonexistence of homotopy equivalences which are C^∽ stable or of finite codimension
不存在 C^∽ 稳定或有限余维的同伦等价
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    N.Iwase;M.Mimura;T.Nishimoto;S.Okuyama;島川和久;Kohhei Yamaguchi;Kohhei Yamaguchi;Shigo Okuyama;Yoshifumi Ando;Yoshifumi Ando;Yasuyuki Miyazawa;Y.Ando
  • 通讯作者:
    Y.Ando
Symmetric submanifolds associated with irreducible symmetric R-spaces
  • DOI:
    10.1007/s00208-005-0646-2
  • 发表时间:
    2005-04
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    J. Berndt;J. Eschenburg;H. Naitoh;K. Tsukada
  • 通讯作者:
    J. Berndt;J. Eschenburg;H. Naitoh;K. Tsukada
MAGNETIC GRAPHS AND AN INVARIANT FOR VIRTUAL LINKS
Nonexistence of homotopy equivalences which are C^∞ stable or of finite codimension
不存在 C^∞ 稳定或有限余维的同伦等价
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    N.Iwase;M.Mimura;T.Nishimoto;S.Okuyama;島川和久;Kohhei Yamaguchi;Kohhei Yamaguchi;Shigo Okuyama;Yoshifumi Ando
  • 通讯作者:
    Yoshifumi Ando
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KOMIYA Katsuhiro其他文献

KOMIYA Katsuhiro的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KOMIYA Katsuhiro', 18)}}的其他基金

Research on families of fixed point sets of G-manifolds in transformation group theory
变换群理论中G流形不动点集族的研究
  • 批准号:
    15540079
  • 财政年份:
    2003
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study on Transformation Group Theory and Equivariant K-theory
变换群理论和等变K理论研究
  • 批准号:
    12640075
  • 财政年份:
    2000
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Transformation Group Theory and Critical Point Theory
变换群理论和临界点理论
  • 批准号:
    09640113
  • 财政年份:
    1997
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Automorphism group of a smooth G-manifold and its applications.
光滑G流形的自同构群及其应用。
  • 批准号:
    21540074
  • 财政年份:
    2009
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Under what conditions can a finite group G act freely on a compact manifold M, in particular when M is a cartesian product of two spheres
在什么条件下有限群 G 可以自由作用于紧流形 M,特别是当 M 是两个球体的笛卡尔积时
  • 批准号:
    377112-2009
  • 财政年份:
    2009
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
The autornorphisrn group of smcoth G-manifokls andals applications
smcoth G-manifokls 和应用程序的 autornorphisrn 组
  • 批准号:
    18540077
  • 财政年份:
    2006
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Topological study on the structure of the group of homeomorphisms
同胚群结构的拓扑研究
  • 批准号:
    12640094
  • 财政年份:
    2000
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study on the structure of the group of homeomorphisms
同胚群的结构研究
  • 批准号:
    10640096
  • 财政年份:
    1998
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了