Geometric structures of 3-manifolds and various related structures

三流形的几何结构及各种相关结构

基本信息

  • 批准号:
    17540077
  • 负责人:
  • 金额:
    $ 1.41万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2005
  • 资助国家:
    日本
  • 起止时间:
    2005 至 2006
  • 项目状态:
    已结题

项目摘要

In this research project, we obtained the following results.1. We defined a numerical invariant, called growth rate of tunnel numbers, of knots in 3-manifolds. For m-small knots, we obtained the following.Suppose K is a m-small knot in. a 3-manifold M. Let g = g(X)-g(M), and b_i (i =1,..., g) be the bridge index of K with respect to genus g(X) - i Heegaard surface of M. Then the growth rate of K is given by min_i=_<1,..., n>{1-i/(b_i)}.2. Heegaard splittings of exteriors of knots.・ Let K_1, K_2 be knots in 3-manifolds, and T_1,T_2 tunnel systems of K_1, K_2 respectively. We gave a necessary and sufficient condition for the tunnel system t_1 ∪ T_2 of K_1#K_2 giving a stabilized Heegaard splitting.・ For each natural number n, there exists a knot K such that the equality g(nK) = gt(K) holds, where nK denotes the connected sum of n copies of K. This implies the existence of counterexample to Morimoto's Conjecture concerning super additive phenomina of tunnel number of knots.3. We showed that for any link L in the 3-sphere, there is a Seifert surface S for L such that S is obtained from a disk by successively plumbing flat annuli, where all of the attaching regions are contained in the disk.4. We made research on Gersten's Problem : each automatic group is either (1) a finite group, (2) contains a free abelian group of rank 2. or (3) a word hyperbolic group.We showed that for the n-starred automatic groups this assertion holds.5. Growth function of 2-bridge link groupsWe made computar experiments on the growth functions of 2-bridge link groups, and posed conjectures on the structure of the growth functions.
在这个研究项目中,我们进行了形式的不变性,称为M-Smart结的隧道数量折叠的增长率。 (x)-g(m)和b_i(i = 1,...,g)是k的桥索引,相对于M g -i属。 {...,n> {1-i/(b_i)}。 ∪k_1#k_2的T_2给出了稳定的Heegaard拆分,存在一个结,平等G(nk)= gt(k)持有,nk表示K关于打结的隧道数量的超级添加。3我们显示的任何链接。在磁盘中包含。4。关于生长功能结构的猜想。

项目成果

期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A search method for a thin position of a link
一种链接细位置的搜索方法
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T.Kobayashi;Y.Riek;Yasushi Yamashita;Yamashita Yasushi;M.Brittenham;Tsuyoshi Kobayashi
  • 通讯作者:
    Tsuyoshi Kobayashi
Essential laminations and branched surfaces in the exteriors of links
链节外部的基本叠片和分支表面
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M.Brittenham;C.Hayashi;M.Hirasawa;T.Kobayashi;K.Shimokawa
  • 通讯作者:
    K.Shimokawa
On the growth rate of tunnel number of knots
论隧道节数增长率
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kobayashi;Teiichi;Minyou Katagiri;T.Shibata;Tsuyoshi Kobayashi;T.Kobayashi;Tsuyoshi Kobayashi;S.Matsumoto;T.Inaba;Kazuhiro Ichihara;Tsuyoshi Kobayashi;Kazuhiro Ichihara;Tsuyoshi Kobayashi
  • 通讯作者:
    Tsuyoshi Kobayashi
Heegaard genus of the connected sum of m-small knots
  • DOI:
    10.4310/cag.2006.v14.n5.a8
  • 发表时间:
    2005-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tsuyoshi Kobayashi;Y. Rieck
  • 通讯作者:
    Tsuyoshi Kobayashi;Y. Rieck
Computer experiments on the discreteness locus in projective structures
射影结构离散轨迹的计算机实验
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KOBAYASHI Tsuyoshi其他文献

KOBAYASHI Tsuyoshi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KOBAYASHI Tsuyoshi', 18)}}的其他基金

Development of the novel molecular targeted therapy against hepatocellular carcinoma invasion and metastasis
新型抗肝细胞癌侵袭转移分子靶向治疗药物的研究进展
  • 批准号:
    21791288
  • 财政年份:
    2009
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
On developments and applications of Heegaard theory
论Heegaard理论的发展与应用
  • 批准号:
    21540082
  • 财政年份:
    2009
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on 3-manifolds based on geometric techniques and its expanse
基于几何技术的3-流形及其展开研究
  • 批准号:
    19540083
  • 财政年份:
    2007
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on various geometric structures on 3-manifolds
3-流形上的各种几何结构研究
  • 批准号:
    15540073
  • 财政年份:
    2003
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Representations of 3-manifolds and geometric informations derived from them
3-流形的表示以及从它们导出的几何信息
  • 批准号:
    12640071
  • 财政年份:
    2000
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Combinatorial structures of low dimensional manifolds
低维流形的组合结构
  • 批准号:
    10640076
  • 财政年份:
    1998
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Research and development of passive-type high Reynolds number isotropic turbulence generator in small wind tunnel.
小型风洞被动式高雷诺数各向同性湍流发生器的研发
  • 批准号:
    18K03947
  • 财政年份:
    2018
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study on dynamic stall of a body in a low Reynolds number region using unsteady and non-uniform wind tunnel
基于非定常非均匀风洞的低雷诺数区域物体动态失速研究
  • 批准号:
    15K13862
  • 财政年份:
    2015
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Study on establishment of cryogenic wind tunnel testing for flow visualizations in a high Reynolds number flow
高雷诺数流动可视化低温风洞试验建立研究
  • 批准号:
    26420821
  • 财政年份:
    2014
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of small low pressure wind tunnel and study on aerodynamic characteristics of insect sized wing at very low Reynolds number
小型低压风洞研制及极低雷诺数昆虫翼气动特性研究
  • 批准号:
    25630395
  • 财政年份:
    2013
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Investigating wind tunnel blockage effects on low reynolds number flow over an airfoil
研究风洞堵塞对机翼上低雷诺数流动的影响
  • 批准号:
    404936-2010
  • 财政年份:
    2010
  • 资助金额:
    $ 1.41万
  • 项目类别:
    University Undergraduate Student Research Awards
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了