Study on Positive Solutions of Nonlinear Elliptic Boundary Value Problems Arising in Population Dynamics
种群动力学中非线性椭圆边值问题的正解研究
基本信息
- 批准号:16540165
- 负责人:
- 金额:$ 1.73万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2004
- 资助国家:日本
- 起止时间:2004 至 2006
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In this research we studied existence and behavior of positive solutions to a nonlinear elliptic boundary value problem of logistic type in a smooth bounded domain of the Euclidean space, as a parameter included varies.1. We established a theorem on bifurcation and stability of positive solutions under nonlinear boundary conditions. A local bifurcation analysis was carried out by using the Lyapunov-Schmidt type of procedure, the local bifurcation theory due to Crandall and Rabinowitz and the method of super and subsolutions. Moreover we reduced our problem to a constrained minimization one based on the first bifurcation solution, to obtain multi plicity of positive solutions.2. We established a nonexistence theorem for positive solutions under nonlinear boundary conditions when parameter is small enough, where a variational technique and super and subsolutions are used.3. We studied a linear indefinite eigenvalue problem with a Robin type boundary condition. Existence and uniqueness of a positive principal eigenvalue was proved by use of a variational approach. We also obtained an a priori lower bound for the positive principal eigenvalue in terms of the sign-changing weight included in the given eigenvalue problem. We remark that we can get the linear eigenvalue problem under consideration if the nonlinear elliptic boundary value problem of logistic type is linearized at the trivial solution which is identically equal to zero.4. We studied blowing-up property of the positive principal eigenvalue for a linear elliptic eigenvalue problem with an indefinite weight and Neumann boundary condition. Necessary and sufficient conditions for the blowing-up property were discussed. It should be emphasized that we constructed a counterexample to show that a known necessary and sufficient condition for the blowing-up property in the Dirichlet boundary condition case no longer remains true.
在这项研究中,我们研究了在欧几里得空间的平滑界面域中对逻辑类型的非线性椭圆边界值问题的积极解决方案的存在和行为,因为包括参数随附了。1。我们在非线性边界条件下建立了关于阳性溶液的分叉和稳定性定理。通过使用lyapunov-schmidt类型的程序,由于crandall和Rabinowitz引起的局部分叉理论以及超级和亚种的方法,进行了局部分叉分析。此外,我们将问题降低到基于第一个分叉溶液的约束最小化,以获得阳性溶液的多层次。2。当参数足够小时,我们在非线性边界条件下建立了一个不存在的定理,其中使用变异技术,超级和亚物物。3。我们研究了一个线性不确定的特征值问题,并使用了罗宾类型边界条件。通过使用各种方法证明了积极主征价的存在和独特性。我们还根据给定特征值问题所包含的签名重量来获得正主特征值的先验下限。我们指出的是,如果在琐事解决方案处将非线性椭圆边界值问题线性化,我们可以考虑正在考虑的线性特征值问题,而非线性椭圆形的边界值问题与零相同。4。我们研究了正主特征值的吹吹,用于无限重量和诺伊曼边界条件的线性椭圆特征值问题。讨论了爆破财产的必要条件。应该强调的是,我们构建了一个反例,以表明在Dirichlet边界条件情况下,已知的已知必要条件不再是真实的。
项目成果
期刊论文数量(24)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Multiplicity of positive solutions under nonlinear boundry conditions for diffusive logistic equations
扩散Logistic方程非线性边界条件下的正解重数
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:K.Watanabe;T.Kobayashi;T.Suzuki;Kenichiro Umezu;Kenichiro Umezu;Kenichiro Umezu;Kenichiro Umezu;Kenichiro Umezu;Kenichiro Umezu;Kenichiro Umezu;Kenichiro Umezu
- 通讯作者:Kenichiro Umezu
MULTIPLICITY OF POSITIVE SOLUTIONS UNDER NONLINEAR BOUNDARY CONDITIONS FOR DIFFUSIVE LOGISTIC EQUATIONS
- DOI:10.1017/s0013091503000294
- 发表时间:2004-06
- 期刊:
- 影响因子:0.7
- 作者:K. Umezu
- 通讯作者:K. Umezu
Local bifurcation analysis and stability of steady-state solutions for diffusive logistic equations with nonlinear boundary conditions
非线性边界条件扩散Logistic方程的局部分岔分析和稳态解的稳定性
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:K.Watanabe;T.Kobayashi;T.Suzuki;Kenichiro Umezu;Kenichiro Umezu;Kenichiro Umezu;Kenichiro Umezu;Kenichiro Umezu;Kenichiro Umezu
- 通讯作者:Kenichiro Umezu
One parameter-dependent nonlinear elliptic boundary value problems arising in population dynamics
种群动态中出现的一种参数相关的非线性椭圆边值问题
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:K.Watanabe;T.Kobayashi;T.Suzuki;Kenichiro Umezu;Kenichiro Umezu;Kenichiro Umezu;Kenichiro Umezu
- 通讯作者:Kenichiro Umezu
On eigenvalue problems with Robin type boundary conditions having indefinite coefficients
- DOI:10.1080/00036810500337860
- 发表时间:2006-11
- 期刊:
- 影响因子:1.1
- 作者:K. Umezu
- 通讯作者:K. Umezu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
UMEZU Kenichiro其他文献
UMEZU Kenichiro的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('UMEZU Kenichiro', 18)}}的其他基金
Study on the bifurcation structure of positive solutions for concave-convex mixed nonlinear elliptic boundary value problems with indefinite weights
不定权凹凸混合非线性椭圆边值问题正解的分岔结构研究
- 批准号:
15K04945 - 财政年份:2015
- 资助金额:
$ 1.73万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Bifurcation analysis for nonlinear elliptic boundary value problems with combined nonlinearity of absorption and blowing up effects arising in population dynamics
群体动力学中吸收和爆炸效应组合非线性的非线性椭圆边值问题的分岔分析
- 批准号:
22540170 - 财政年份:2010
- 资助金额:
$ 1.73万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on nonlinear elliptic boundary value problems with Allee effects, arising in population dynamics
种群动态中具有 Allee 效应的非线性椭圆边值问题的研究
- 批准号:
19540192 - 财政年份:2007
- 资助金额:
$ 1.73万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似国自然基金
带两相Stefan边界条件的反应扩散方程的定性研究
- 批准号:11901238
- 批准年份:2019
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
带跳跃非线性项或非线性边界条件的平均曲率问题解集连通分支研究
- 批准号:11901464
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
非线性边界条件下Schrodinger方程的拟周期解
- 批准号:11701212
- 批准年份:2017
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
复杂非线性连续系统新型全局离散和高效非线性动力学分析方法研究
- 批准号:11772100
- 批准年份:2017
- 资助金额:62.0 万元
- 项目类别:面上项目
带边界条件的可积非线性波方程理论和数值算法
- 批准号:11675054
- 批准年份:2016
- 资助金额:58.0 万元
- 项目类别:面上项目
相似海外基金
Nonlinear partial differential equation with a dynamical boundary condition
具有动态边界条件的非线性偏微分方程
- 批准号:
16K17629 - 财政年份:2016
- 资助金额:
$ 1.73万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Global solution structure and the stability of nonlocal nonlinear second order boundary value problems with definite integrals
非局部非线性二阶定积分边值问题的全局解结构与稳定性
- 批准号:
15540220 - 财政年份:2003
- 资助金额:
$ 1.73万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mathematical analysis on the structure of solutions for the fundamental systems of equations in continuum mechanics
连续介质力学基本方程组解结构的数学分析
- 批准号:
15340050 - 财政年份:2003
- 资助金额:
$ 1.73万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
INSTABILITY MECHANISM OF FLEXIBLE BEAM AXIALLY MOVING IN A CONSTRAINED REGION
柔性梁受约束区域轴向移动失稳机理
- 批准号:
12650234 - 财政年份:2000
- 资助金额:
$ 1.73万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
反応拡散方程式系に対する漸近解析
反应扩散方程组的渐近分析
- 批准号:
08740089 - 财政年份:1996
- 资助金额:
$ 1.73万 - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)