Generalization of Hopf-quotient theory and applications to subfactors and others

Hopf 商理论的推广及其在子因素和其他因素中的应用

基本信息

  • 批准号:
    16540008
  • 负责人:
  • 金额:
    $ 1.54万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2004
  • 资助国家:
    日本
  • 起止时间:
    2004 至 2005
  • 项目状态:
    已结题

项目摘要

A quotient of a group G is given by G/N for some normal sub-group N of G ; this trivial fact for ordinary groups is never obvious for affine group schemes. Affine group schemes are in a categorical one-to-one correspondence with commutative Hopf algebras, and therefore non-commutative Hopf algebras can be regarded as quantized objects of affine group schemes. The head investigator has investigated quotients of non-commutative Hopf algebras, calling such an investigation 'Quotient-Hopf Theory'. This research project supported by the Grant-in-Aid for Scientific (C)(2) is to generalize the quotient-Hopf theory to fit in the symmetric category of super-vectoe spaces or more genrally in braided categories, and to apply the results to differential-difference Galois theories, super affine groups and braided Hopf algebras. The paper "Picard-Vessiot extensions of artinian simple module algebras" joint with K.Amano gives a general framework to unify Galois theories for differential equations and difference equations. The article "The fundamental correspondences in super affine groups and super formal groups" proves the fundamental correspondence theorems for super affine groups and super formal groups, both. The paper "Unipotent algebraic affine supergroups and nilpotent Lie superalgebras" joint with T.Oka superizes the well-known category-equivalence between unipotent algebraic affine groups and finite-dimensional nilpotent Lie algebras. The result was further generalized in the framework of braided Hopf algebras by the newest preprint.
对于 G 的某个正规子群 N,群 G 的商由 G/N 给出;对于普通群来说这个微不足道的事实对于仿射群方案来说从来不明显。仿射群方案与交换Hopf代数是一一对应的,因此非交换Hopf代数可以被视为仿射群方案的量化对象。首席研究员研究了非交换霍普夫代数的商,称这种研究为“商霍普夫理论”。该研究项目由科学补助金 (C)(2) 支持,旨在推广商 Hopf 理论以适应超矢量空间的对称范畴或更一般地适应编织范畴,并应用结果微分差分伽罗瓦理论、超仿射群和辫状 Hopf 代数。与 K.Amano 合作的论文“Picard-Vessiot extensions of artinian simple module algebras”给出了统一微分方程和差分方程的伽罗瓦理论的通用框架。 “超仿射群和超形式群中的基本对应关系”一文证明了超仿射群和超形式群的基本对应定理。与 T.Oka 合作的论文“单能代数仿射超群和幂零李超代数”将单能代数仿射群和有限维幂零李代数之间众所周知的范畴等价性进行了超级化。最新的预印本将这一结果进一步推广到辫状 Hopf 代数的框架中。

项目成果

期刊论文数量(32)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The fundamental correspandences in super affine groups and super formal groups
超仿射群和超形式群的基本对应
Example of almost commutative Hait algeloras which are not coqvasitriangular
几乎可交换的 Hait algeloras 的例子,它不是 coqvasi 三角形
Picard-Vessiot extensions of artinian simple module algebras
artinian 简单模代数的 Picard-Vessiot 扩展
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    K.Amano;A.Masuoka
  • 通讯作者:
    A.Masuoka
Quantum lines over non-cocommutative cosenusimple Hopf algebras
非共交换共合简单 Hopf 代数上的量子线
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    C.Calinescu;S.Dascarescu;A.Masuoka;C.Menini
  • 通讯作者:
    C.Menini
The fundamental correspondences in super affine groups and super formal groups
超仿射群和超形式群中的基本对应关系
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Akira Masuoka
  • 通讯作者:
    Akira Masuoka
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MASUOKA Akira其他文献

MASUOKA Akira的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MASUOKA Akira', 18)}}的其他基金

Study of super-algebraic groups using Hopf algebras
用Hopf代数研究超代数群
  • 批准号:
    26400035
  • 财政年份:
    2014
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study of super algebraic groups from functorial viewpoint
从函子的角度研究超代数群
  • 批准号:
    23540039
  • 财政年份:
    2011
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Hopf-Galois theoretic approach to quantum groups
量子群的 Hopf-Galois 理论方法
  • 批准号:
    20540036
  • 财政年份:
    2008
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Unifying differential and difference Picard Vessiot theories by using Hopfalgebras
使用 Hopfalgebras 统一微分和差分 Picard Vessiot 理论
  • 批准号:
    18540009
  • 财政年份:
    2006
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Classification of coquasi-Hopf algebras by tensor equivalence and constructions of new braidings
通过张量等价对 coquasi-Hopf 代数进行分类和新编织的构造
  • 批准号:
    14540007
  • 财政年份:
    2002
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Classification of Hopf algebras and quantum groups by tensor equivalences
通过张量等价对 Hopf 代数和量子群进行分类
  • 批准号:
    12640008
  • 财政年份:
    2000
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Classification of coquasi-Hopf algebras by tensor equivalence and constructions of new braidings
通过张量等价对 coquasi-Hopf 代数进行分类和新编织的构造
  • 批准号:
    14540007
  • 财政年份:
    2002
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了