Development and Application of control theory based on organic combination of algebraic and analytic methods
代数与解析方法有机结合的控制理论的发展与应用
基本信息
- 批准号:15560375
- 负责人:
- 金额:$ 1.92万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2003
- 资助国家:日本
- 起止时间:2003 至 2005
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Regarding stability analysis, the frequency response operators of sampled-data systems defined in the frequency domain have been utilized, and an associated theory for positive-realness has been completed. For example, the relationship between positive-realness and some eigenvalue conditions has been clarified, and an algebraic method for checking positive-realness has been established based on a inertia law about the eigenvalues of operators. Furthermore, regarding the Nyquist stability criterion for periodically time-varying systems, the two-regularized determinant about the associated frequency response operator was employed to lead to a new result based on the principle of argument. These results about stability analysis can readily be applied to robust stability analysis and robust performance analysis of sampled-data systems ; it can be said that they have laid a path to advanced methods for robust stability/performance analysis by properly bridging the gap between algebraic methods and analytic methods.As a side remark, some novel ideas have been derived from such fundamental analysis, and their basic properties have been partially derived. Also, regarding methods for discretization and reduction of continuous-time controllers, theoretical studies as well as numerical studies have been carried out. Through such studies, our future research direction has been suggested. Furthermore, regarding the analysis of periodically time-varying systems, some approximate methods have been introduced which does not require the solution of infinite-dimensional equations, and their effectiveness was clarified by establishing some convergence property via error analysis. Finally, as an example for demonstrating the effectiveness of our research direction, a new method has been shown that enables one to deal with the positive-realness analysis and the bounded-realness analysis of linear time-invariant systems in a systematic and transparent way.
关于稳定性分析,已经利用了频域定义的采样数据系统的频率响应算子,并且已经完成了正面真实性的相关理论。例如,已经阐明了积极现实与某些特征值条件之间的关系,并且基于关于操作员特征值的惯性法,已经建立了用于检查正面真实性的代数方法。此外,关于定期时间变化系统的Nyquist稳定性标准,采用了有关相关频率响应操作员的两次调节决定因素,从而基于参数原理导致新的结果。这些有关稳定性分析的结果可以轻松地应用于采样数据系统的稳健稳定性分析和稳健的性能分析。可以说,他们通过正确弥合代数方法和分析方法之间的差距,为稳健稳定/性能分析提供了高级方法的途径。作为旁注,一些新颖的想法是从这种基本分析及其基本分析中得出的。属性已被部分得出。同样,关于离散和减少连续时间控制器的方法,已经进行了理论研究以及数值研究。通过这样的研究,我们提出了我们未来的研究方向。此外,关于定期时间变化系统的分析,已经引入了一些近似方法,这些方法不需要解决方案的解决方案解决方案,并通过通过误差分析来建立某些收敛性来阐明它们的有效性。最后,作为证明我们研究方向有效性的一个例子,已经证明了一种新方法,它使人们能够以系统透明的方式处理线性时间不变系统的正面真实性分析和有限的真实性分析。
项目成果
期刊论文数量(38)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
T.Hagiwara, T.Mugiuda: "Positive-Realness Analysis of Sampled-Data Systems and Its Applications"Automatica. (掲載予定). (2004)
T.Hagiwara、T.Mugiuda:“采样数据系统的实证分析及其应用”Automatica(待出版)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Trace formula of linear continuous-time periodic systems via the harmonic Lyapunov equation
- DOI:10.1080/0020717031000091441
- 发表时间:2003-01
- 期刊:
- 影响因子:2.1
- 作者:Jun Zhou-;T. Hagiwara;M. Araki
- 通讯作者:Jun Zhou-;T. Hagiwara;M. Araki
Spectral Characteristics and Eigenvalues Computation of the Harmonic State Operators in Continuous-Time Periodic Systems
连续时间周期系统谐波态算子的谱特性和特征值计算
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:J.Zhou;T.Hagiwara;M.Araki
- 通讯作者:M.Araki
A Study on the Spectrum of the Sampled-Data Transfer Operator with Application to Robust Exponential Stability Problems
采样数据传输算子谱在鲁棒指数稳定性问题中的应用研究
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:T.Hagiwara
- 通讯作者:T.Hagiwara
J.Zhou, T.Hagiwara, M.Araki: "Trace Formula of Linear Continuous-Time Periodic Systems via the Harmonic Lyapunov Equation"International Journal of Control. 76-5. 488-500 (2003)
J.Zhou、T.Hagiwara、M.Araki:“基于调和李亚普诺夫方程的线性连续时间周期系统的迹公式”国际控制杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
HAGIWARA Tomomichi其他文献
Analysis of the <i>l<sub>q</sub></i>/<i>l<sub>p</sub></i> Hankel Norms of Discrete-time Positive Systems
离散时间正系统的<i>l<sub>q</sub></i>/<i>l<sub>p</sub></i> Hankel范数分析
- DOI:
10.9746/sicetr.57.128 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
SHIGA Ryosuke;KATO Teruki;EBIHARA Yoshio;HAGIWARA Tomomichi - 通讯作者:
HAGIWARA Tomomichi
Verification of the Scaling Effect by Stochastic Scaling Elements
随机缩放元素的缩放效果验证
- DOI:
10.9746/sicetr.56.421 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
NAGIRA Yuji;HOSOE Yohei;HAGIWARA Tomomichi - 通讯作者:
HAGIWARA Tomomichi
HAGIWARA Tomomichi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('HAGIWARA Tomomichi', 18)}}的其他基金
Operator-Theoretic Study on the Synthesis and Analysis of Control Systems via Fast-Lifting and Its Algebraic Extension
快速提升控制系统综合分析及其代数推广算子理论研究
- 批准号:
21560461 - 财政年份:2009
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on Advanced Development and Systematization of Analysis and Design Methods for Control Systems via an Operator-Theoretic Approach
基于算子理论方法的控制系统分析设计方法的高级开发和系统化研究
- 批准号:
18560432 - 财政年份:2006
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A study on the construction of a framework of control theory based on organic combination of algebraic and analytic methods
代数与解析方法有机结合的控制理论框架构建研究
- 批准号:
12650444 - 财政年份:2000
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)