Universal aspects of Malti-ergodic phase space structure in many body hamiltonian dynamics

多体哈密顿动力学中马尔蒂遍历相空间结构的普遍方面

基本信息

  • 批准号:
    15540376
  • 负责人:
  • 金额:
    $ 2.05万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2003
  • 资助国家:
    日本
  • 起止时间:
    2003 至 2005
  • 项目状态:
    已结题

项目摘要

The invariantt measure of generic hamiltonian systems reveals a number of singularities in phase space, where the non-hyperbolicity of hamiltonian dynamics plays an essential role. The appearance of such infinite measure has been studied so far in the framework of infinite ergodic theory [Aaronson, 1997]. [A] We have studied many characteristics of non-hyperbolic chaos, such as the spectral indeces, correlation functions, Lyapunov exponents, and the Lempel-Ziv Complexity, and we have succeeded to derive the exact interrelations among those characteristics. Furthermore, we have succeeded to formulate the exact Levy diffusion equation in terms of anomalous diffusion in the phase space of non-hyperbolic hamiltonian dynamics. These results suggest that the measure-theoretical structure of hamilton dynamics is quite different from the ordinary SRB measures in hyperbolic systems. [B] The infinite ergodic aspects are discovered in the cluster formation process, where the Weibull type distributions are universally observed. We have succeeded to explain those statistical laws from the scaling theory based on the Nekoroshev theorem, and also revealed that the large deviation properties are realized in those statistical features. These results suggest very strongly that the Arnold diffusion may be characterized in the framework of the infinite ergodic theory.
通用哈密顿系统的不变测度揭示了相空间中的许多奇点,其中哈密顿动力学的非双曲性起着至关重要的作用。迄今为止,这种无限测度的出现已经在无限遍历理论的框架中进行了研究[Aaronson,1997]。 [A] 我们研究了非双曲混沌的许多特征,例如谱因数、相关函数、Lyapunov 指数和 Lempel-Ziv 复杂度,并且我们成功地推导了这些特征之间的精确相互关系。此外,我们成功地根据非双曲哈密顿动力学相空间中的反常扩散制定了精确的 Levy 扩散方程。这些结果表明,汉密尔顿动力学的测度理论结构与双曲系统中普通的 SRB 测度有很大不同。 [B] 在簇形成过程中发现了无限遍历方面,普遍观察到威布尔型分布。我们成功地从基于涅科罗舍夫定理的标度理论中解释了这些统计规律,并揭示了这些统计特征中实现了大偏差特性。这些结果强烈表明阿诺德扩散可以在无限遍历理论的框架中进行表征。

项目成果

期刊论文数量(95)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Non-Stationary Effect on the Behavior on an On-Off Ratchet
非平稳效应对开关棘轮行为的影响
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    松本崇;相澤洋二
  • 通讯作者:
    相澤洋二
The Lempel-Ziv Complexity of 1/f Spectral Chaos and the Infinite Ergodic Theorem
1/f 谱混沌的 Lempel-Ziv 复杂性和无限遍历定理
Weibull, Log-Weibull Laws in the Stationary-Nonstationary Chaos
威布尔,稳态-非稳态混沌中的对数威布尔定律
The Scaling Law and Lyapunov Exponent of the Replicator Turbulence
复制湍流的标度定律和李亚普诺夫指数
Takuma Akimoto, Yoji Aizawa: "Logarithmic Scaling in the Stationary-Nonstationary Chaos Transition"Progress of Theoretical Physics. 110. 849-860 (2003)
Takuma Akimoto、Yoji Aizawa:“稳态-非稳态混沌转变中的对数标度”理论物理进展。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

AIZAWA Yoji其他文献

AIZAWA Yoji的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('AIZAWA Yoji', 18)}}的其他基金

Multi ergodicity in nearly integrable Hamiltonian systems and large deviation properties of infinite ergodic systems
近可积哈密顿系统的多重遍历性和无限遍历系统的大偏差性质
  • 批准号:
    21540399
  • 财政年份:
    2009
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Ergodicity and Transport Phenomena in Hamiltonian Systems under Non-equilibrium Conditions
非平衡条件下哈密顿系统的遍历性和输运现象
  • 批准号:
    18540383
  • 财政年份:
    2006
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Ergodic and Kinetic Properties of Hamiltonian Dynamical Systems
哈密​​顿动力系统的遍历和动力学性质
  • 批准号:
    09640472
  • 财政年份:
    1997
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The origin of 1/f spectrum fluctuation in the hamiltonian dynamics for lattice systems.
晶格系统哈密顿动力学中 1/f 谱涨落的起源。
  • 批准号:
    06640515
  • 财政年份:
    1994
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
RESEARCH ON ERGODIC PROBLEMS IN HAMILTONIAN DYNAMICS
哈密​​顿动力学中各态历经问题的研究
  • 批准号:
    02640296
  • 财政年份:
    1990
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)

相似国自然基金

非一致双曲系统的动力学与遍历性质
  • 批准号:
    12371194
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
非一致双曲系统的熵估计
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
带有非局部项的耦合双曲系统的镇定与控制
  • 批准号:
    61903005
  • 批准年份:
    2019
  • 资助金额:
    27.0 万元
  • 项目类别:
    青年科学基金项目
光滑动力系统的Lyapunov指数的相关问题研究
  • 批准号:
    11871487
  • 批准年份:
    2018
  • 资助金额:
    55.0 万元
  • 项目类别:
    面上项目
非双曲系统中SRB测度的存在性问题
  • 批准号:
    11801278
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Symmetric systems and strongly hyperbolic systems
对称系统和强双曲系统
  • 批准号:
    07454027
  • 财政年份:
    1995
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
区分的可逆な非線型多次元変換の測度論的研究
分段可逆非线性多维变换的测度理论研究
  • 批准号:
    05740142
  • 财政年份:
    1993
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了