GEOMETRY OF 3-MANIFOLDS AND QUANTUM INVARIANTS

三流形的几何结构和量子不变量

基本信息

  • 批准号:
    15540089
  • 负责人:
  • 金额:
    $ 1.6万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2003
  • 资助国家:
    日本
  • 起止时间:
    2003 至 2004
  • 项目状态:
    已结题

项目摘要

The volume conjecture of knots states that the asymptotic behavior of the colored Jones polynomial, a genaralization of the famous Jones polynomial, determines the simplicial volume of the knot complement. This conjecture was first proposed by R. Kashaev for hyperbolic knots, and generalized by H. Murakami and J. Murakami for general knots. This conjecture is further generalized to involve the Chern-Simons invariants through a computer experiment made by H. Murakami, J. Murakami, M. Okamoto, T. Takata and the author. Now, many geometers and topologists are interested in this problem. The purpose of this research is to investigate the relationship between the geometry of 3-manifolds and the quantum invariants, motivated by the volume conjecture which suggests a relationship between the geometry of knot complements and the colored Jones polynomial.In 2003, with H. Murakami, we proved that, for the figure eight knot, certain limit of the colored Jones polynomial dominates not only the vol … More ume of the complement but also the volumes of the closed 3-manifolds obtained by Dehn surgeries, which corrects the conjecture proposed by S. Gukov, and we proposed a new genaralization of the volume conjecture, which also explains the unexpected relationship between the recursive formula of the colored Jones polynomial and the A-polynomial of knots. We reported this result in the international workshops held at Edinburgh and Geneva in 2003 together with a newest result concerning the relationship between quantum 6j-symbols and volumes of hyperbolic tetrahedra. The author further confirmed that the argument for the figure eight knot is also available for so-called twist knots, and reported this result in the international workshop held at Potsdam in 2004.On the other hand, when the author visited the University of Geneva in 2004, R. Kashaev and the author proved that the colored Jones polynomial of knots can be expressed by simple integrals over higher dimensional tori by using quantum dilogarithm functions whose asymptotic behaviors are well-known. We consider this result is a big progress toward the solution of the volume conjecture, because we may estimate the asymptotic behavior of such integrals over tori, a well-known compact manifold, by using the saddle point method together with the Morse theoretic argument. We have already reported this result in the meeting of American Mathematical Society held at Atlanta in early 2005. Less
结的体积猜想指出,有色琼斯多项式(著名的琼斯多项式的推广)的渐近行为决定了结补的单纯体积。该猜想首先由 R. Kashaev 针对双曲结提出,并由 H 推广。 Murakami 和 J. Murakami 通过计算机实验将这个猜想进一步推广到涉及 Chern-Simons 不变量。 H. Murakami、J. Murakami、M. Okamoto、T. Takata 和作者们现在对这个问题感兴趣,这项研究的目的是研究 3-流形的几何形状与几何之间的关系。量子不变量,受体积猜想的启发,体积猜想表明了结补的几何形状与彩色琼斯多项式之间的关系。2003 年,我们与 H. Murakami 一起证明了,对于数字 8结,有色琼斯多项式的一定极限不仅支配补体的体积,而且支配Dehn手术得到的闭3-流形的体积,这纠正了S. Gukov提出的猜想,我们提出了一个新的猜想体积猜想的推广,这也解释了彩色琼斯多项式的递归公式与结的 A 多项式之间的意外关系,我们在 举行的国际研讨会上报告了这一结果。 2003年爱丁堡和日内瓦提出了关于量子6j符号与双曲四面体体积关系的最新结果,作者进一步证实了8字结的论证也适用于所谓的扭结,并报道了这一结果。 2004年在波茨坦举行的国际研讨会上。 另一方面,2004年作者访问日内瓦大学时,R. Kashaev和作者证明了纽结的彩色琼斯多项式可以通过使用渐近行为众所周知的量子双对数函数来表示为高维圆环上的简单积分,我们认为这个结果是解决体积猜想的一大进步,因为我们可以估计此类积分的渐近行为。 tori,一个著名的紧流形,利用鞍点法结合莫尔斯理论论证,我们早在亚特兰大举行的美国数学会会议上就已经报告了这个结果。 2005. 减

项目成果

期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A volume formula for hyperbolic tetrahedral in terms of edge lengths
以边长表示的双曲四面体的体积公式
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Murakami;J.;Ushijima;A.
  • 通讯作者:
    A.
J.Murakami, M.Yano: "On the volume of a hyperbolic and spherical tetrahedron"Communications in Analysis and Geometry. (掲載予定).
J.Murakami,M.Yano:“关于双曲和球形四面体的体积”分析与几何通讯(待出版)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
A formula for the A-polynomial of (-2,3,1-2n)-pretzel knots
(-2,3,1-2n)-椒盐结的 A 多项式的公式
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Guest;M.;S.Koike;J.O'Hara;M.Oka;Y.Yokota
  • 通讯作者:
    Y.Yokota
N.Tamura, Y.Yokota: "A formula for the A-polynomial of (-2, 3, 1+2n)-pretzel knots"Tokyo Journal of Mathematics. (掲載予定).
N.Tamura、Y.Yokota:“(-2, 3, 1+2n)-椒盐结的 A 多项式的公式”,东京数学杂志(待出版)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
On the volume of a hyperbolic and spherical tetrahedron
关于双曲和球面四面体的体积
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

YOKOTA Yoshiyuki其他文献

YOKOTA Yoshiyuki的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('YOKOTA Yoshiyuki', 18)}}的其他基金

On the volume conjecture for knots
关于结的体积猜想
  • 批准号:
    24540088
  • 财政年份:
    2012
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Volume conjecture of knots and its applications
结的体积猜想及其应用
  • 批准号:
    21540090
  • 财政年份:
    2009
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Volume conjecture for knots and 3-manifolds
结和 3 流形的体积猜想
  • 批准号:
    19540097
  • 财政年份:
    2007
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
General research of the volume conjecture of knots
结体积猜想的一般研究
  • 批准号:
    17540090
  • 财政年份:
    2005
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
THE VOLUME CONJECTURE OF KNOTS AND ITS RAMIFICATIONS
结的体积猜想及其后果
  • 批准号:
    13640086
  • 财政年份:
    2001
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Topological field theory and some problems on 3-manifolds
拓扑场论和3-流形的一些问题
  • 批准号:
    11640085
  • 财政年份:
    1999
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Perturbative expansion of quantum invariants
量子不变量的微扰展开
  • 批准号:
    09640118
  • 财政年份:
    1997
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似国自然基金

利用量子模拟研究Jones多项式的计算
  • 批准号:
    11874343
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目

相似海外基金

The Jones Polynomial and Hyperbolic Geometry of Surfaces
曲面的琼斯多项式和双曲几何
  • 批准号:
    2203255
  • 财政年份:
    2022
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Continuing Grant
Study of categorificaitons of Vassiliev invariants
Vassiliev不变量的分类研究
  • 批准号:
    20K03604
  • 财政年份:
    2020
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The Geometry and Topology of the Jones Polynomial
琼斯多项式的几何和拓扑
  • 批准号:
    1811114
  • 财政年份:
    2018
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Continuing Grant
The Geometry, Topology and Number Theory of the Jones Polynomial
琼斯多项式的几何、拓扑和数论
  • 批准号:
    1406419
  • 财政年份:
    2014
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Standard Grant
Study on on properties and an extension of series and functions obtained from the quantum invariant of rational homology 3-shperes
有理同调3-球体量子不变量的级数和函数的性质及推广研究
  • 批准号:
    25400094
  • 财政年份:
    2013
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了