Geometry and Topology of 3-Manifolds

三流形的几何和拓扑

基本信息

  • 批准号:
    12440015
  • 负责人:
  • 金额:
    $ 7.17万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
  • 财政年份:
    2000
  • 资助国家:
    日本
  • 起止时间:
    2000 至 2002
  • 项目状态:
    已结题

项目摘要

This project was aimed to develop the interdisciplinary study of 3-manifolds which interacts geometry and topology based on the connection between several structures related mainly with hyperbolic geometry. We have in fact promoted our project in conjunction with the activity of the Topology Research Congress.We made certain significant progresses during these three research years which turned out to be rather surprising than what we had expected. The study of myself together with Mizushima and Tan on circle packings on surfaces with projective structures has clarified an expected global structure of their moduli space in the light of the deformation theory of hyperbolic 3-manifolds. The study of Yoshida on SU(2) conformal field theory has established successfully an explicit description of a basis of conformal blocks, and has approached to the fundamental connection between the geometry and topology of 3-manifolds suggested for instance by the volume con-jecture. Also, the global diagram in the 3-manifold topological invariant world suggested by Ohtsuki was completed quite recently in the most universal way by Habiro and Le. In addition, there have been down-to-earth progresses by other collaborators such as Morita's study on the mapping class group of surfaces, Matsumoto's on foliations, Sakuma's on knots and geometric structures, Soma's on bounded cohomology,In conclusion, our research has clarified the object on which we should now focus for finding the mathematical principle behind the interaction between many structures observed in the 3-manifold theory. Note in addition, the theme was fortunately funded for further study as the part II.
该项目的目的是基于几种与双曲线几何相关的几种结构之间的联系,开发3个manifolds的跨学科研究,该研究与几何和拓扑相互作用。实际上,我们与拓扑研究大会的活动一起促进了我们的项目。在这三个研究年份中,我们取得了一定的重大进展,事实证明,这比我们预期的要令人惊讶。根据双曲线3个manifolds的变形理论,与我的圆形包装上的Mizushima和Tan一起研究,阐明了其模量空间的预期全球结构。吉田对SU的研究(2)保形场理论成功地建立了对共形块基础的明确描述,并已探讨了通过体积概念提出的3个序列的几何形状和拓扑之间的基本联系。此外,Ohtsuki建议的3个式拓扑不变世界中的全球图是由Habiro和Le以最普遍的方式完成的。此外,其他合作者(例如,莫里塔(Morita)对映射阶层的绘制阶级,松本(Matsumoto),关于叶子的叶子,萨库马(Sakuma)的结论和几何结构的研究,索马(Soma)的研究,关于有限共有界共同体的研究,我们的研究应该阐明了几个构建的对象,我们应该阐明几个构造的构造 - 在界定的对象中,索马(Soma oon on Some)进行了三个构造,索马(Soma oon on Soma)的构图和几何结构上已经存在脚踏实地的进步。请注意,此外,该主题幸运地作为第二部分进行了进一步研究。

项目成果

期刊论文数量(70)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
T, Soma: "Sequences of degree-one maps between geometric 3-manifolds"Math. Ann.. 316. 733-742 (2000)
T,Soma:“几何 3 流形之间的一阶映射序列”数学。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Kojima, Nishi, Yamashita: "Configuration spaces of points on the circle and hyperbolic Dehn fillings, II"Geometriae Dedicata. 89. 143-157 (2002)
Kojima、Nishi、Yamashita:“圆上点的配置空间和双曲 Dehn 填充,II”Geometriae Dedicata。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
S. Matsumoto: "On the global rigidity of split Anosov R^n-actions"J. of Math. Soc. Japna. 55. 39-46 (2003)
S. Matsumoto:“关于分裂 Anosov R^n 动作的全局刚性”J。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
S.Kojima: "Complex hyperbolic cone structures on the confiugration spaces"Rend.Istit.Mat.Univ.Trieste. 32. 149-163 (2001)
S.Kojima:“配置空间上的复杂双曲锥体结构”Rend.Istit.Mat.Univ.Trieste。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KOJIMA Sadayoshi其他文献

KOJIMA Sadayoshi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KOJIMA Sadayoshi', 18)}}的其他基金

Deepening three-manifold theory
深化三流形理论
  • 批准号:
    22244004
  • 财政年份:
    2010
  • 资助金额:
    $ 7.17万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Geometry and Invariants of 3-manifolds
3-流形的几何和不变量
  • 批准号:
    18204004
  • 财政年份:
    2006
  • 资助金额:
    $ 7.17万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Geometry and topology of 3-manifolds II
三流形的几何和拓扑 II
  • 批准号:
    15204004
  • 财政年份:
    2003
  • 资助金额:
    $ 7.17万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Deformation of cone-manifolds and topology of 3-mainfolds
锥流形的变形和三流形的拓扑
  • 批准号:
    10440017
  • 财政年份:
    1998
  • 资助金额:
    $ 7.17万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)

相似海外基金

Concrete construction of cone hyperbolic structures for a 3-dimensional cone manifold with non-compact cone singularity
具有非紧锥奇点的三维锥流形锥双曲结构的具体构造
  • 批准号:
    23740064
  • 财政年份:
    2011
  • 资助金额:
    $ 7.17万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
特異点をもつ3次元双曲多様体の変形理論に関する研究
具有奇点的三维双曲流形变形理论研究
  • 批准号:
    07J00707
  • 财政年份:
    2007
  • 资助金额:
    $ 7.17万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Research on the deformation space of hyperbolic structures on manifolds
流形上双曲结构变形空间研究
  • 批准号:
    18540080
  • 财政年份:
    2006
  • 资助金额:
    $ 7.17万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Deformations of 3-dimensional cone-manifold structures
3维锥流管结构的变形
  • 批准号:
    5407518
  • 财政年份:
    2003
  • 资助金额:
    $ 7.17万
  • 项目类别:
    Priority Programmes
Geometry and topology of 3-manifolds II
三流形的几何和拓扑 II
  • 批准号:
    15204004
  • 财政年份:
    2003
  • 资助金额:
    $ 7.17万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了