Confinement in quasi one-dimensional magnetically ordered quantum spin systems
准一维磁有序量子自旋系统中的限制
基本信息
- 批准号:456782977
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Confinement means that certain particles cannot exist in isolation, but must form bound states. The most famous example for this phenomenon is the confinement of quarks in hadrons. But confinement can also be observed in condensed matter systems. A most important example here is the confinement of spinons (= topological or kink excitations) in spin-chain compounds in which a linear attractive potential between the kinks is induced by a weak coupling between neighbouring magnetic chains. Kink confinement of this type was recently observed in neutron-scattering and terahertz-spectroscopy experiments in several ferro- and antiferromagnetic compounds. The main objective of the proposed research project is to perform analytic first-principal calculations of the experimentally relevant quantities, including the energy spectrum of the two-kink bound states and the dynamical structure factor. Our primary subject of interest will be the XXZ spin-1/2 chain, being a realistic model of a one-dimensional quantum anti-ferromagnet. Confinement of kinks takes place in the antiferromagnetic massive phase of this model, if it is perturbed by an integrability-breaking staggered magnetic field $h>0$ simulating the mean interaction with neighbouring chains. The integrability of the model at $h=0$ will make it possible to study the confinement phenomenon by means of a small-$h$ perturbative analysis based on the Bethe-Salpeter equation.
限制意味着某些粒子不能孤立地存在,而必须形成结合的状态。这种现象的最著名的例子是在哈德子中的夸克限制。但是在凝结物质系统中也可以观察到限制。这里最重要的例子是旋转链化合物中纺纱片(=拓扑或扭结激发)的限制,在这种化合物中,扭结之间的线性吸引力是由相邻磁链之间的弱耦合引起的。最近在几种铁磁性和抗铁磁化合物中的中子散射和Terahertz-Spectroscopicy实验中观察到了这种类型的纠结限制。拟议的研究项目的主要目的是对实验相关数量的分析初级计算,包括两键结合状态的能量光谱和动态结构因子。我们感兴趣的主要主题将是XXZ Spin-1/2链,是一维量子抗铁磁铁的现实模型。扭结的限制发生在该模型的抗磁性大规模阶段,如果它受到突破性的交错磁场的扰动,$ h> 0 $模拟与相邻链的平均相互作用。该模型在$ h = 0 $中的可集成性将使通过基于伯特 - 盐分方程的小$ h $扰动分析来研究限制现象。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Hermann Boos其他文献
Professor Dr. Hermann Boos的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Hermann Boos', 18)}}的其他基金
Universal functional equations for spectrum, thermodynamics and correlation functions of integrable lattice models
可积晶格模型的谱、热力学和相关函数的通用函数方程
- 批准号:
398579888 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Research Grants
Equal-time correlation functions of integrable lattice models
可积晶格模型的等时相关函数
- 批准号:
281452587 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Research Units
LATTICE APPROACH TO INTEGRABLE QUANTUM FIELD THEORIES AND APPLICATIONS
可积量子场理论和应用的格子方法
- 批准号:
281507754 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Research Units
Correlation functions and the space of local operators in off-critical models and conformal quantum field theories
非临界模型和共形量子场论中的相关函数和局部算子空间
- 批准号:
514562733 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
Correlation functions of integrable lattice models and quantum field theories
可积晶格模型和量子场论的相关函数
- 批准号:
421428192 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Units
相似国自然基金
十次对称二维纳米准晶层状板的力学行为研究
- 批准号:11862021
- 批准年份:2018
- 资助金额:45.0 万元
- 项目类别:地区科学基金项目
混凝土动态力学性能和抗侵彻行为的准细观尺寸效应与相似律研究
- 批准号:11772160
- 批准年份:2017
- 资助金额:56.0 万元
- 项目类别:面上项目
全级配水工混凝土断裂的边界与尺寸效应
- 批准号:51779095
- 批准年份:2017
- 资助金额:59.0 万元
- 项目类别:面上项目
小尺寸系统自组织临界态的特性研究:准周期行为与极端事件预测
- 批准号:11675096
- 批准年份:2016
- 资助金额:50.0 万元
- 项目类别:面上项目
基于准TEM波激励的新型天线技术研究
- 批准号:61401339
- 批准年份:2014
- 资助金额:27.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: DMREF: Developing and Harnessing the Platform of Quasi-One-Dimensional Topological Materials for Novel Functionalities and Devices
合作研究:DMREF:开发和利用用于新功能和器件的准一维拓扑材料平台
- 批准号:
2324033 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
The contribution of air pollution to racial and ethnic disparities in Alzheimer’s disease and related dementias: An application of causal inference methods
空气污染对阿尔茨海默病和相关痴呆症的种族和民族差异的影响:因果推理方法的应用
- 批准号:
10642607 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Collaborative Research: DMREF: Developing and Harnessing the Platform of Quasi-One-Dimensional Topological Materials for Novel Functionalities and Devices
合作研究:DMREF:开发和利用用于新功能和器件的准一维拓扑材料平台
- 批准号:
2324032 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: DMREF: Developing and Harnessing the Platform of Quasi-One-Dimensional Topological Materials for Novel Functionalities and Devices
合作研究:DMREF:开发和利用用于新功能和器件的准一维拓扑材料平台
- 批准号:
2324034 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: DMREF: Developing and Harnessing the Platform of Quasi-One-Dimensional Topological Materials for Novel Functionalities and Devices
合作研究:DMREF:开发和利用用于新功能和器件的准一维拓扑材料平台
- 批准号:
2324035 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant