Mathematical Research on Mathematical Models of Quantum Computing
量子计算数学模型的数学研究
基本信息
- 批准号:11440028
- 负责人:
- 金额:$ 6.72万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:1999
- 资助国家:日本
- 起止时间:1999 至 2001
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The following results have been obtained on mathematical foundations on quantum Turing machine and quantumcircuits: (1) Local transition functions of quantum Turing machines (QTM) are generally characterized including multitape cases. (2) The notion of uniform quantum circuit families (UQCF) was introduced for the first time and developed their complexity theory nd proved the computational equivalence between QTMs and UQCF in Monte Caro type computations. (3) In order to solve the halting problem for QTMs, it has been proved that under a refined halting protocol measurements of halting flag do not disturb the probability distribution of the output of computations.The following results have been obtained on physical implementations of quantum logicgates: (1) Conservation laws limit theaccuracy of physical implementations of elementary quantum logic gates. (2) Although the SWAP gate has no conflict with the conservation law, the controlled-NOT gate, which is one of the universal quantum … More logic gates, cannot be implemented by any 2-qubit rotationally invariant unitary operation within error probability 1/16.. (3) If the computational basis is represented by a component of spin and physical implementations obey the angular momentum conservation law, any physically realizable quantum logicgates with n qubit ancilla cannot implement the controlled-NOT gate within the error probability 1/(4n^2). (4) An analogous relation holds for bosonic ancillae with the size defined through the average number of photons. Any set of universal gates inevitably obeys a related limitation with error probability O(n^<-2>). (5) The current theory demands the threshold error probability 10^5 10^6 for each quantum gate. Thus, a single controlled-NOT gate would not be in reality a unitary operation on a 2-qubitsystem but would be a unitary operation on a system with at least 100 qubits. (6) The present investigation suggests that the current choice of the computational basis should be modified so that the computational basis commutes with the conserved quantity. Less
在数学基础上获得了以下结果,并在量子量机上和量子循环中获得了以下结果:(1)量子图灵机(QTM)的局部过渡函数通常被表征在内,包括多层案例。 (2)首次引入了均匀量子电路家族(UQCF)的概念,并开发了其复杂性理论,提供了QTMS和UQCF之间的计算等效性,以蒙特卡罗类型计算。 (3)为了解决QTMS的停止问题,已证明,在制定的停止方案测量中,停止标志的测量结果不会使计算输出输出的概率分布分配。在物理实施量子逻辑门的物理实施方面已获得以下结果:(1)保护法律限制了基本量子量子的物理实现的局限性。 (2)尽管互换大门与保护法没有冲突,但受控的闸门是通用的量子……更多的逻辑大门之一,无法通过任何2 Q量的旋转旋转旋转不变的单一操作在误差概率中1/16中的统一操作。(3)无法在错误概率1/(4n^2)中实现受控的未门门。 (4)类似的关系适用于玻色词Ancillae,其大小通过平均照片数量定义。任何一套通用门都不可避免地会服从一个相关限制,而误差概率o(n^<-2>)。 (5)当前理论要求每个量子门的阈值误差概率10^5 10^6。这就是一个受控门不会实际上是在2 Qubitsystem上进行的单一操作,而是在具有至少100个配额的系统上的单一操作。 (6)本研究表明,应修改计算基础的当前选择,以便计算基础以配置的数量进行。较少的
项目成果
期刊论文数量(132)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
C.Donati-Martin, H.Hatsumoto, H.Yor: "On positive and negative moments of the integrals of geometric Brownian motions"Stat.Prob.Lett.. 49. 45-52 (2000)
C.Donati-Martin、H.Hatsumoto、H.Yor:“论几何布朗运动积分的正矩和负矩”Stat.Prob.Lett.. 49. 45-52 (2000)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Y.Matsubara: "Stronger ideals over P_kλ"Fundamanta Mathematicae. (印刷中).
Y. Matsubara:“比 P_kλ 更强大的理想”Fundamanta Mathematicae(正在出版)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Y.Matsubara, S.Shelah: "Nowhere precipitousness of the non-stationary ideal over PκA"Journal of Mathematical Logic. (in press).
Y. Matsubara、S. Shelah:“PκA 上的非平稳理想无处陡峭”《数理逻辑杂志》(出版中)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
H.Ozawa: "Operations, disturbance, ands imultaneous measurability"Phys.Rev.. 63. 032109-1-032109-15 (2001)
H.Ozawa:“操作、干扰和同步可测量性”Phys.Rev.. 63. 032109-1-032109-15 (2001)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Y.Matsubara: "Stronger ideals over P_κλ"Fundamenta Mathematicae. (in press).
Y. Matsubara:“比 P_κλ 更强大的理想”数学基础(正在出版)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
OZAWA Masanao其他文献
OZAWA Masanao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('OZAWA Masanao', 18)}}的其他基金
Study of Quantum Foundations and Quantum Set Theory
量子基础和量子集合论研究
- 批准号:
17K19970 - 财政年份:2017
- 资助金额:
$ 6.72万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Study of the Probabilistic Interpretation of Quantum Set Theory
量子集合论的概率解释研究
- 批准号:
15K13456 - 财政年份:2015
- 资助金额:
$ 6.72万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Mathematical Studies of Fundamental Principles of Quantum Theory
量子理论基本原理的数学研究
- 批准号:
26247016 - 财政年份:2014
- 资助金额:
$ 6.72万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Study of Quantum Set Theory Aiming at an Interpretation of Elements of Reality in Quantum Theory
旨在解释量子理论中现实元素的量子集合论研究
- 批准号:
24654021 - 财政年份:2012
- 资助金额:
$ 6.72万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Quantum Set Theory Aiming at Realistic Interpretation of Quantum Theory
量子集合论旨在现实地解释量子理论
- 批准号:
22654013 - 财政年份:2010
- 资助金额:
$ 6.72万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Mathematical study of quantum information
量子信息的数学研究
- 批准号:
21244007 - 财政年份:2009
- 资助金额:
$ 6.72万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Mathematical Research of Quantum Information and Quantum Computing
量子信息与量子计算的数学研究
- 批准号:
14340028 - 财政年份:2002
- 资助金额:
$ 6.72万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Unitary Representations of Hyperfinite Heisenberg Groups and Their Applications to Quantum Physics
超有限海森堡群的酉表示及其在量子物理中的应用
- 批准号:
08454039 - 财政年份:1996
- 资助金额:
$ 6.72万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
相似海外基金
A stronger simulation of quantum Turing machines by quantum circuits and its implications
量子电路对量子图灵机的更强模拟及其影响
- 批准号:
518705-2018 - 财政年份:2019
- 资助金额:
$ 6.72万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
A stronger simulation of quantum Turing machines by quantum circuits and its implications
量子电路对量子图灵机的更强模拟及其影响
- 批准号:
518705-2018 - 财政年份:2018
- 资助金额:
$ 6.72万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral