Development of unified system with non-linear analytic technique for time series data based upon the fluctuation-dissipation theorem

基于波动耗散定理的时间序列数据非线性分析技术统一系统的开发

基本信息

  • 批准号:
    10554001
  • 负责人:
  • 金额:
    $ 8.13万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B).
  • 财政年份:
    1998
  • 资助国家:
    日本
  • 起止时间:
    1998 至 2000
  • 项目状态:
    已结题

项目摘要

We constructed a theory of KM_2O-Langevin equations for flows in a vector space with a metric in which a characterization theorem that characterizes stationarity of flow in terms of the fluctuation-dissipation theorem, a construction theorem of stationary flow, an extension theorem of stationary flow and an extension theorem of non-negative definite functions were proved. Moreover, we developed both the theory of weight transformation for degenerate flows in a vector space with a metric and the theory of non-linear information analysis for local stochastic processes with discrete time.By using these results, we resolved the non-linear prediction problem for one-dimensional strictly stationary processes which had remained to be solved for a long time after Masani-Wiener's work. Furthermore, by developing a non-linear information analysis for local multi-dimensional stochastic processes with discrete time and then using the theory of linear prediction in the theory of KM_2O-Langevin equa … More tions for degenerate flows, we solved both the non-linear prediction problem and the non-linear filtering problem for multi-dimensional stochastic processes with discrete time.As another application of the non-linear information analysis for local multi-dimensional stochastic processes with discrete time, we introduced the concept of weak causality that is weaker than yhe one of strong causality investigated so far. Precisely speaking, for given two stochastic proceses X=(X(n) ; 0【less than or equal】n【less than or equal】N), Y=Y(n) ; 0【less than or equal】n【less than or equal】N), we say that there exists a weak causality from X to Y if there exist certain M_O (0【less than or equal】M_O【less than or equal】N) and Borel functions f_n (M_O【less than or equal】n【less than or equal】N) such that Y(n)=f_n(X(n), X(n-1), ..., X(0), Y(n-1), Y(n-2), ..., Y(0))(M_O【less than or equal】n【less than or equal】N). Furthermore, by establishing a criteria of Test (CS) that determines the existence of weak causality from X to Y for given two time series data X=(X(n) ; 0【less than or equal】n【less than or equal】N), X=(X(n) ; 0【less than or equal】n【less than or equal】N), we investigated both th weak causality and the strong causality among the various time series data that are related to the E1 Nino phenomena that is said to be related to the increase of earth atmosphere temperature and announced their results at ICIAM99 that was held in Edinburg in 1999.We constructed another genarating system of the non-linear information space by proving an approximation theorem by the radial basic functions that are used in the chaotic time series data.Moreover, we developed several softs that deterimine the stationarity, causality, determinicity and chaotic property of time series data and a unified soft that derives cetain dynamics behind time series data and then predicts its future. Thus, we can apply these softs to carry out causal analysis, model analysis and prediction analysis for time series data with the framework of the theory of KM_2O-Langevin equations. Less
我们构建了一种具有度量的向量空间中的流量的KM_2O-兰格方程理论,在该矢量空间中,表征理论表征了流动静止理论的流动平稳性,一种平稳流的构建理论,平稳流动的延伸理论和非阴性定义功能的扩展理论。此外,我们既开发了具有指标的媒介空间中退化流量的重量转化理论,也开发了具有离散时间的本地随机过程的非线性信息分析的理论。通过这些结果,我们解决了对一维严格的平稳过程的非线性预测问题,这些过程已在Masani-Wienerer的工作中得到了很长时间的解决。 Furthermore, by developing a non-linear information analysis for local multi-dimensional stochastic processes with discrete time and then using the theory of linear prediction in the theory of KM_2O-Langevin equi… More terms for degenerate flows, We solved both the non-linear prediction problem and the non-linear filtering problem for multi-dimensional stochastic processes with discrete time.As another application of the non-linear information analysis for local随着离散时间的多维随机过程,我们引入了弱因果关系的概念,该概念比迄今为止所研究的强大因果关系弱。准确地说,对于给定的两个随机过程x =(x(n); 0 [小于或相等] n [小于或小于或相等] n),y = y(n); 0【小于或等于】n【小于或等于】n n),我们说,如果存在某些M_O(0小于或等于或等于】n),则从x到y的差异很弱,而borel函数却小于或等于或等于或等于或等于或等于或等于或等于或等于n n n n n n n n n n n n n n n n n n n n n】n(x)(x)。 x(n-1),...,x(0),y(n-1),y(n-2),...,y(0))(m_o【小于或等于】n【小于或等于】n)。此外,通过建立一个测试标准(CS),该标准决定了两个时间序列数据的因果关系弱的因果关系弱的因果关系x =(x(n); 0小于或等于或等于】n【小于或等于或等于或等于】nn】n。 atmosphere temperature and announced their results at ICIAM99 that was held in Edinburg in 1999.We constructed another genarating system of the non-linear information space by providing an approximation theorem by the radial basic functions that are used in the chaotic time series data.Moreover, we developed several softs that determine the stationarity, causality, determining and chaotic property of time series data and a unified soft that derives cetain dynamics behind time series data and then预测它的未来。较少的

项目成果

期刊论文数量(48)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
T.Kanamaru,T.Horita and Y.Okabe: "Stochastic resonance in the Hodgkin-Huxley network" Journal of the Physical Society of Japan. 67巻12号. 4058-4063 (1998)
T. Kanamaru、T. Horita 和 Y. Okabe:“Hodgkin-Huxley 网络中的随机共振”《日本物理学会杂志》第 67 卷,第 12 期。4058-4063 (1998)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
M.Matsuura and Y.Okabe: "On a non-linear prediction problem fro one-dimensional stochastic processes"Japanese Journal of Mathematics. (to appear). (2001)
M.Matsuura 和 Y.Okabe:“关于一维随机过程的非线性预测问题”日本数学杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
N.Masuda and Y.Okabe: "Time series analysis with wavelet coefficients"Japan Journal of Industrial and Applied Mathematics. (2001)
N.Masuda 和 Y.Okabe:“利用小波系数进行时间序列分析”日本工业与应用数学杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Y.Okabe: "On the theory of KM_2O-Langevin equations for stationary flows (II) : construction theorem"to appear in the special volume in honor of the 70th birthday of Professor Takeyuki Hida. (2001)
Y.Okabe:“关于平稳流的KM_2O-Langevin方程的理论(II):构造定理”出现在纪念飞田武之教授70岁生日的特刊中。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Y.Okabe: "On the theory of KM_2O-Langevin equations for stationary flows (II) : construction theorem"The special volume in honor of the 70th birthday of Professor Takeyuki Hida. (掲載予定). (2000)
Y.Okabe:“关于平稳流的KM_2O-Langevin方程的理论(II):构造定理”纪念飞田武之教授70岁生日的特刊(即将出版)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

OKABE Yasunori其他文献

OKABE Yasunori的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('OKABE Yasunori', 18)}}的其他基金

Pathologic analysis of Rett syndrome with the model induced pluripotent stem cells for development of treatment method
使用模型诱导多能干细胞对雷特综合征进行病理分析以开发治疗方法
  • 批准号:
    22791009
  • 财政年份:
    2010
  • 资助金额:
    $ 8.13万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Neural Development of Methyl-CpG-Binding Protein 2-Null Embryonic Stem Cells : A System for Studing Rett Syndrome
甲基-CpG 结合蛋白 2-Null 胚胎干细胞的神经发育:研究 Rett 综合征的系统
  • 批准号:
    20790756
  • 财政年份:
    2008
  • 资助金额:
    $ 8.13万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Time series analysis for abnormality test and modeling of corrplex system and a study for the derived model from a view point of the theory of stochastic processes
随机过程理论视角下复杂系统异常测试与建模的时间序列分析及推导模型研究
  • 批准号:
    14340030
  • 财政年份:
    2002
  • 资助金额:
    $ 8.13万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
A study of identification problem for continuous model in phenomena of complex system based on the theory of Langevin equations from the viewpoint of the theory of stochastic processes
从随机过程理论的角度研究基于朗之万方程理论的复杂系统现象中的连续模型辨识问题
  • 批准号:
    10440026
  • 财政年份:
    1998
  • 资助金额:
    $ 8.13万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B).
A study on modeling and prediction for nonlinear phenomena from the viewpoint of the theory of stochastic processes
随机过程理论视角下的非线性现象建模与预测研究
  • 批准号:
    07459007
  • 财政年份:
    1995
  • 资助金额:
    $ 8.13万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
A study of stationarity and causality based on the theory of KM_2O-Langevin equations
基于KM_2O-Langevin方程理论的平稳性和因果性研究
  • 批准号:
    03452011
  • 财政年份:
    1991
  • 资助金额:
    $ 8.13万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了