A study of stationarity and causality based on the theory of KM_2O-Langevin equations
基于KM_2O-Langevin方程理论的平稳性和因果性研究
基本信息
- 批准号:03452011
- 负责人:
- 金额:$ 0.9万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for General Scientific Research (B)
- 财政年份:1991
- 资助国家:日本
- 起止时间:1991 至 1992
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
By developing the theory of KMO-Langevin equations describing the time evolution of one-dimensional weakly stationary processes with reflection positivity, we have obtained not only a unified mathematical embodiment of the fluctuation-dissipation-theorem, but also elucidated the mathematical structure of Alder-Wainwright effect.In the course of the project above, we have grasped a philosophy-the fluctuation- dissipation-principle-as a guiding principle for the attitude of research in applying pure mathematics to applied science. Further, we have developed the theory of KM_2O-Langevin equations for the multi-dimensional weakly stationary time series. We have applied the theory of KM_2O-Langevin equations to be able to resolve the non-linear prediction problem for the one-dimensional strictly stationary time series , by obtaining a computable algorithm for the non-linear predictor, which is submitted to J. Math. Soc. Japan.Moreover, as applications to data analysis, we are going to develop a new project which consisits of the four part: the stationary analysys, the causal analysys, the entropy analysys and the prediction analysis. A work concernig causal analysis is submitted to Nagoya Math. J.Our next aim is to search certain dynamics behind complex system like chaotic system and then predict its future, by using the project above.
通过发展KMO-LANGEVIN方程的理论,描述了具有反射阳性的一维弱静态过程的时间演变,我们不仅获得了波动 - 驱散性的统一数学体现,而且还阐明了对等级的数学效果,我们已经阐明了Alder-wainwield a的过程。指导原则,以将纯数学应用于应用科学时的研究态度。此外,我们为多维弱固定时间序列开发了KM_2O-LANGEVIN方程的理论。我们已经应用了KM_2O-LANGEVIN方程的理论来解决一维严格固定时间序列的非线性预测问题,通过获得可计算算法的非线性预测指标,该算法已提交给J. Math。 Soc。日本。此外,作为数据分析的应用,我们将开发一个新的项目,该项目同意这四个部分:固定分析,因果分析,熵分析和预测分析。因果分析的工作关注。 J.our下一个目标是搜索像混沌系统这样的复杂系统背后的某些动态,然后使用上面的项目来预测其未来。
项目成果
期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Y. Okabe: "Langevin equation and causality" Mathematics. 43. 34-58 (1991)
Y. Okabe:“朗之万方程和因果关系”数学。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Y.Okabe: "The theory of KM_2OーLangeuin equations and its applications to data analysis(I):Stationary analysis" Hokkaido Mathematical Journal. 20. 45-90 (1991)
Y.Okabe:“KM_2O-Langeuin方程的理论及其在数据分析中的应用(I):平稳分析”北海道数学杂志20. 45-90(1991)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Y.Okabe: "Applications of the theory of KM_2O-Langevin equations to the linear prediction problem for the multi-dimensional weakly stationary time series" J.Math.Soc.Japan.
Y.Okabe:“KM_2O-Langevin 方程理论在多维弱平稳时间序列线性预测问题中的应用”J.Math.Soc.Japan。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Y. Okabe: "Langevin equations and causal analysis" Sugaku Expositions in Amer. Math. Soc.
Y. Okabe:“朗之万方程和因果分析”美国 Sugaku Expositions。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Y.Okabe: "Langevin equations and causal analysis" Sugaku Expositions in Amer.Math.Soc.
Y.Okabe:“Langevin 方程和因果分析”Amer.Math.Soc 中的 Sugaku Expositions。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
OKABE Yasunori其他文献
OKABE Yasunori的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('OKABE Yasunori', 18)}}的其他基金
Pathologic analysis of Rett syndrome with the model induced pluripotent stem cells for development of treatment method
使用模型诱导多能干细胞对雷特综合征进行病理分析以开发治疗方法
- 批准号:
22791009 - 财政年份:2010
- 资助金额:
$ 0.9万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Neural Development of Methyl-CpG-Binding Protein 2-Null Embryonic Stem Cells : A System for Studing Rett Syndrome
甲基-CpG 结合蛋白 2-Null 胚胎干细胞的神经发育:研究 Rett 综合征的系统
- 批准号:
20790756 - 财政年份:2008
- 资助金额:
$ 0.9万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Time series analysis for abnormality test and modeling of corrplex system and a study for the derived model from a view point of the theory of stochastic processes
随机过程理论视角下复杂系统异常测试与建模的时间序列分析及推导模型研究
- 批准号:
14340030 - 财政年份:2002
- 资助金额:
$ 0.9万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of unified system with non-linear analytic technique for time series data based upon the fluctuation-dissipation theorem
基于波动耗散定理的时间序列数据非线性分析技术统一系统的开发
- 批准号:
10554001 - 财政年份:1998
- 资助金额:
$ 0.9万 - 项目类别:
Grant-in-Aid for Scientific Research (B).
A study of identification problem for continuous model in phenomena of complex system based on the theory of Langevin equations from the viewpoint of the theory of stochastic processes
从随机过程理论的角度研究基于朗之万方程理论的复杂系统现象中的连续模型辨识问题
- 批准号:
10440026 - 财政年份:1998
- 资助金额:
$ 0.9万 - 项目类别:
Grant-in-Aid for Scientific Research (B).
A study on modeling and prediction for nonlinear phenomena from the viewpoint of the theory of stochastic processes
随机过程理论视角下的非线性现象建模与预测研究
- 批准号:
07459007 - 财政年份:1995
- 资助金额:
$ 0.9万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
相似海外基金
Time series analysis for abnormality test and modeling of corrplex system and a study for the derived model from a view point of the theory of stochastic processes
随机过程理论视角下复杂系统异常测试与建模的时间序列分析及推导模型研究
- 批准号:
14340030 - 财政年份:2002
- 资助金额:
$ 0.9万 - 项目类别:
Grant-in-Aid for Scientific Research (B)