Research on families of functions determining structures of spaces of analytic functions
决定解析函数空间结构的函数族研究
基本信息
- 批准号:10440039
- 负责人:
- 金额:$ 5.82万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B).
- 财政年份:1998
- 资助国家:日本
- 起止时间:1998 至 2000
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Izuchi (Head investigator) introduced the concept of weak infinite powers of Blaschke products and characterized Blaschke products which are weak generators of L^∞. Also Izuchi defined L^1 and L^∞-type singular inner functions and showed that for a positive singular measure there exists a particular set in M (H^∞) associated with the measure. He proved the existence of trivial points which are not contained in the closure of a nontrivial Gleason part. This answers the Budde problem. And the set of such points is dense in the set of trivial points.Izuchi showed the existence of homeomorphic parts which are not locally sparse. This answers Gorkin-Mortini problem. He determined closed ideals of H^∞ whose zero sets are contained in the set of nontrivial points (with Gorkin-Mortini). Also Izuchi solved the Gorkin-Mortini problem concerning with prime ideals in H^∞+C.About invariant subspaces on T^2, Izuchi studied A_φ-invariant subspaces and gen-eralized Nakazi's theorems (with Matsugu). And he started to study composition operators on H^∞ and determined connected components with respect to the essential norm topology (with Zheng).On the results of investigators, Saito determined invariant subspaces on T^2 under the certain condition. Huruya defined the concept of p-hyponormality for n-tuple operators, and proved Putnam type inequality. Hayashi showed that Myrberg phenomenon follows from the uniquness theorem under some additinal conditions. Hatori solved Lausen-Neumann's problem concerned with commutative Banach al-gebras. On a Bohr group, Tanaka proved that an invariant subspace generated by a single function if and only if its cocycle is cohomologous to a singular cocycle. Takagi studied multiplicative and composition operators on ^p-spaces.
Izuchi(负责人)介绍了Blaschke产品的弱无限力量的概念,并表征了Blaschke产品,这些blaschke产品是L^∞的弱发生器。 izuchi也定义了l^1和l^∞型奇异内部函数,并表明,对于正面的奇异测量,存在与测量相关的m(h^∞)中的特定集合。他证明了无处不在的无处不在格里森部分中没有包含的琐碎点。这回答了好友问题。这种点的集合在一组琐碎的地方很稠密。Izuchi显示出并非局部稀疏的同构部分的存在。这回答了Gorkin-Mortini问题。他确定了H^∞的封闭思想,其零集包含在非平凡点(带有Gorkin-Mortini)中。 Izuchi还解决了与H^∞+C.在T^2上不变子空间中的主要思想有关的Gorkin-Mortini问题,Izuchi研究了A_φ-Invariant子空间和Generalized Nakazi的Nakazi定理(带有Matsugu)。他开始研究H^∞的组成算子,并确定相对于基本规范拓扑(使用Zheng)的连接组件。关于研究人员的结果,锡托在特定条件下确定了T^2的不变子空间。 Huruya定义了N型培训机构的P--甲基词概念,并经过证明是Putnam Type不平等的概念。 Hayashi表明,Myrberg现象在某些添加剂条件下从Unices定理中遵循。 Hatori解决了Lausen-Neumann与交换性Banach al-Gebras有关的问题。在BOHR组上,田中证明了一个函数产生的不变子空间,并且仅当其Cocycle共同出现与奇异共生时。 takagi Studiod乘法和组成算子在 ^p空间上。
项目成果
期刊论文数量(246)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Sin-Ei Takahashi: "Astructure of ring homomorphisms on commutative Banach algebras" Proc.Amer.Math.Soc.(発表予定).
Sin-Ei Takahashi:“交换巴纳赫代数上环同态的结构”Proc.Amer.Math.Soc.(待提交)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
M.Hayashi: "A uniqueness theorem and the Myrberg type phenomenon"J.d′Analyse Math.. 76. 109-136 (1998)
M.Hayashi:“唯一性定理和 Myrberg 型现象”J.d′Analyse Math.. 76. 109-136 (1998)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Keiji Izuchi: "Weak infinite powers of Blaschke products"J.Anal.Math.. 75. 135-154 (1998)
Keiji Izuchi:“Blaschke 产品的弱无限幂”J.Anal.Math.. 75. 135-154 (1998)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
K.Izuchi: "singular inner functions of l'-type"J.Korean Math.Soc.. 36・4. 787-811 (1999)
K.Izuchi:“l型的奇异内函数”J.Korean Math.Soc.. 36・4(1999)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
T.Ishii: "Trivial points in the maximal ideal space of H^∞"Houston J.Math.. 25・1. 67-77 (1999)
T.Ishii:“H^∞ 的最大理想空间中的平凡点”Houston J.Math.. 25・1(1999)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
共 112 条
- 1
- 2
- 3
- 4
- 5
- 6
- 23
IZUCHI Keiji的其他基金
Study of operators on spaces of analytic functions and the space of bounded analytic functions
解析函数空间和有界解析函数空间算子的研究
- 批准号:2454016424540164
- 财政年份:2012
- 资助金额:$ 5.82万$ 5.82万
- 项目类别:Grant-in-Aid for Scientific Research (C)Grant-in-Aid for Scientific Research (C)
Study of bounded analytic functions and associated operators on spaces of analytic functions
有界解析函数及解析函数空间上的关联算子的研究
- 批准号:2154016621540166
- 财政年份:2009
- 资助金额:$ 5.82万$ 5.82万
- 项目类别:Grant-in-Aid for Scientific Research (C)Grant-in-Aid for Scientific Research (C)
Studies of the structure of operators on analytic function spaces and their invariant subspaces
解析函数空间及其不变子空间算子结构的研究
- 批准号:1634003716340037
- 财政年份:2004
- 资助金额:$ 5.82万$ 5.82万
- 项目类别:Grant-in-Aid for Scientific Research (B)Grant-in-Aid for Scientific Research (B)
Structure of ideals in the space of bounded analytic functions and operator theory
有界解析函数空间中的理想结构和算子理论
- 批准号:1344004313440043
- 财政年份:2001
- 资助金额:$ 5.82万$ 5.82万
- 项目类别:Grant-in-Aid for Scientific Research (B)Grant-in-Aid for Scientific Research (B)
相似海外基金
Functional Analyistic Studies On The Algebra Of Bounded Analytic Functions On A Riemann Surface
黎曼曲面上有界解析函数代数的泛函分析研究
- 批准号:1654013216540132
- 财政年份:2004
- 资助金额:$ 5.82万$ 5.82万
- 项目类别:Grant-in-Aid for Scientific Research (C)Grant-in-Aid for Scientific Research (C)
Studies of the structure of operators on analytic function spaces and their invariant subspaces
解析函数空间及其不变子空间算子结构的研究
- 批准号:1634003716340037
- 财政年份:2004
- 资助金额:$ 5.82万$ 5.82万
- 项目类别:Grant-in-Aid for Scientific Research (B)Grant-in-Aid for Scientific Research (B)
The Algebras of Bounded Analytic Functions on a Riemann Surface and the isomorphic problem
黎曼曲面上有界解析函数的代数与同构问题
- 批准号:1264014712640147
- 财政年份:2000
- 资助金额:$ 5.82万$ 5.82万
- 项目类别:Grant-in-Aid for Scientific Research (C)Grant-in-Aid for Scientific Research (C)
Boundary behavior of anlytic functions and harmonic functions
解析函数和调和函数的边界行为
- 批准号:0964023009640230
- 财政年份:1997
- 资助金额:$ 5.82万$ 5.82万
- 项目类别:Grant-in-Aid for Scientific Research (C)Grant-in-Aid for Scientific Research (C)