Relations between properties of solutions and geometric symmetry of solutions for nonlinear wave and dispersive equations
非线性波和色散方程解的性质与解的几何对称性之间的关系
基本信息
- 批准号:19204012
- 负责人:
- 金额:$ 26.79万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (A)
- 财政年份:2007
- 资助国家:日本
- 起止时间:2007 至 2010
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The research results are as follows.(1) We proved the stability and instability of vortices for the harmonic map heat-flows, the Landau-Lifshitz equations and the Schrodinger maps.(2) We proved the unconditional uniqueness of solution for the Cauchy problem of the nonlinear Schrodinger with powernonlinearity.(3) We obtained the results about the linear stability and the linear instability of stationary solution bifurcating from the constant stationary solution for the Lugiato-Lefever equation, which is the nonlinear Schrodinger equation with damping and forcing.
研究结果如下。(1)我们证明了谐波热量热量,Landau-Lifshitz方程和Schrodinger地图的涡旋的稳定性和不稳定。(2)我们证明了解决方案的cauchy Schrodinger稳定性的无条件解决方案解决方案的无条件唯一性。从lugiato-lefever方程的恒定固定溶液分叉,这是具有阻尼和强迫的非线性schrodinger方程。
项目成果
期刊论文数量(31)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
LOCAL WELL-POSEDNESS IN LOW REGULARITY OF THE MKDV EQUATION WITH PERIODIC BOUNDARY CONDITION
- DOI:10.3934/dcds.2010.28.1635
- 发表时间:2010-12-01
- 期刊:
- 影响因子:1.1
- 作者:Nakanishi, Kenji;Takaoka, Hideo;Tsutsumi, Yoshio
- 通讯作者:Tsutsumi, Yoshio
A database schema for the analysis of global dynamics of multiparameter systems, SIAM
用于分析多参数系统全局动态的数据库模式,SIAM
- DOI:
- 发表时间:2009
- 期刊:
- 影响因子:0
- 作者:Z. Arai;W. Kalies;H. Kokubu;K. Mischaikow;H. Oka;P. Pilarczyk
- 通讯作者:P. Pilarczyk
Scattering for the two-dimensional energy-critical wave equation
- DOI:10.1215/00127094-2009-053
- 发表时间:2009-11
- 期刊:
- 影响因子:2.5
- 作者:S. Ibrahim;M. Majdoub;N. Masmoudi;K. Nakanishi
- 通讯作者:S. Ibrahim;M. Majdoub;N. Masmoudi;K. Nakanishi
Global dispersive solutions of the Gross-Pitaevskii equation in two and three dimensions
二维和三维 Gross-Pitaevskii 方程的全局色散解
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:S. Gustafson;K. Nakanishi and T.-P. Tsai
- 通讯作者:K. Nakanishi and T.-P. Tsai
Time decay of solution for the KdV equation with multiplicative space-time noise
具有乘性时空噪声的 KdV 方程解的时间衰减
- DOI:
- 发表时间:2008
- 期刊:
- 影响因子:0
- 作者:Y.Nagahata;N.Yoshida;T.Sugawa;Y. Tsutsumi
- 通讯作者:Y. Tsutsumi
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TSUTSUMI Yoshio其他文献
TSUTSUMI Yoshio的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('TSUTSUMI Yoshio', 18)}}的其他基金
Structure of Solutions and Geometric Symmetry for Nonlinear Evolution Equations
非线性演化方程解的结构和几何对称性
- 批准号:
15204008 - 财政年份:2003
- 资助金额:
$ 26.79万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Geometric invariant, propagation of singularity and asymptotic behavior for nonlinear wave equations
非线性波动方程的几何不变量、奇点传播和渐近行为
- 批准号:
12440033 - 财政年份:2000
- 资助金额:
$ 26.79万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Relations between geometric invariant and singularity of solution in nonlinear evolution equations related to nonlinear waves
非线性波非线性演化方程中几何不变量与解奇异性的关系
- 批准号:
09640159 - 财政年份:1997
- 资助金额:
$ 26.79万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Physiological Studies on Application of the Follicular Fluid to Reproduction
卵泡液在生殖中的应用的生理学研究
- 批准号:
60480080 - 财政年份:1985
- 资助金额:
$ 26.79万 - 项目类别:
Grant-in-Aid for General Scientific Research (B)
相似海外基金
楕円型方程式の初期値問題を例とした逆問題の数値的手法の見直し
以椭圆方程初值问题为例回顾反问题的数值方法
- 批准号:
22K18674 - 财政年份:2022
- 资助金额:
$ 26.79万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Nonrelativistic limit for the nonlinear Dirac equation
非线性狄拉克方程的非相对论极限
- 批准号:
20K03671 - 财政年份:2020
- 资助金额:
$ 26.79万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analysis of concentration phenomena for nonlinear wave and dispersive equations
非线性波和色散方程的集中现象分析
- 批准号:
17H02853 - 财政年份:2017
- 资助金额:
$ 26.79万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Existence or non-existence for the solutions of nonlinear wave equations
非线性波动方程解的存在性或不存在性
- 批准号:
16K05191 - 财政年份:2016
- 资助金额:
$ 26.79万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on the structure of the resonant interaction and behavior/singularity of the solutions for nonlinear dispersive wave equations
非线性色散波动方程的共振相互作用结构和解的行为/奇异性研究
- 批准号:
16K17626 - 财政年份:2016
- 资助金额:
$ 26.79万 - 项目类别:
Grant-in-Aid for Young Scientists (B)