Synthetic Studies ofTopology
拓扑综合研究
基本信息
- 批准号:17204007
- 负责人:
- 金额:$ 29.12万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (A)
- 财政年份:2005
- 资助国家:日本
- 起止时间:2005 至 2007
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Recent progress of topology is prompted by the recognition of its relationship with the other area of mathematics which includes differential Geometry, algebra, analysis and mathematical physics. This makes the method of investigation more sophisticated and gives the researches wider perspectives. The purpose of this research project is to make cooperation of various researchers easy and timingly, making the field more active .We have successfully maintained the network of topologists, organized various symposia and conferences timingly, did exchanges of the researchers, invited various well recognized foreign researchers, gave many colloquia abroad, thus contributing to the development of topology in a significant way.Concretely the research of the following areas of topology is developed by our research projects: Theory of singularities of algebraic and differentiable maps: Group actions on manifolds and on simplicial complexes: Actions of mapping class groups on Teichmuller spaces of the surface: Theory of dynamical systems of complex analytic maps: Dynamical study of vector fields on manifolds and foliation theory: Geometirc study of hyperbolic 3-manifold: Differential structure of 4-manifolds and symplectic structures: Conformal field theory: Homotopy theory: Invariants of knots and links: General topology especially those concerned with wild spaces.In Japan, topology is developing constantly by the efforts of many researchers, and it gained worldwide recognition.Grant in aid by the Japan Society for the Promotion of Science is indispensable in this development. We express our hearty gratitude to the JSPS.
拓扑的最新进展是由于其与其他数学领域的关系的认识,包括差异几何,代数,分析和数学物理学。这使得调查方法更加复杂,并提供了更广泛的观点。这项研究项目的目的是使各种研究人员的合作变得更加容易,使领域更加活跃。我们成功地维持了拓扑师网络,组织了各种旨在的旨在交流和会议的交流,邀请了各种知名的外国研究人员进行交流,邀请了许多Colloquia在公民的领域中,从而在我们的研究方面发展了一项重要的研究:促进了拓扑的发展:促进了拓扑的发展。代数和可区分地图的奇点:对歧管和简单复合物的群体行动:在表面的Teichmuller空间上绘制阶级组的作用:复杂分析图的动态系统的理论:对载体和叶面上的载体领域的动力学研究:叶面和叶面理论的构造理论:4-manifold结构的构造和构造:4-元素的构造:构造:构造:4-元素:理论:结与链接的不变:一般拓扑,尤其是那些与野生空间有关的拓扑。我们对JSP表示衷心的感谢。
项目成果
期刊论文数量(25)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
"Spacelike parallels and Legendrian singularities" with referee
与裁判的“类空间平行和传奇奇点”
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:Shuichi;Izumiya;Masatomo;Takahashi
- 通讯作者:Takahashi
Parameter rigid flows on 3-manifolds
3 流形上的参数刚性流
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:Izumiya;Shuichi et al.;Shigenori Matsumoto
- 通讯作者:Shigenori Matsumoto
Generic smooth maps with sphere fibers
具有球体纤维的通用平滑贴图
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:Saeki;Osamu et al.
- 通讯作者:Osamu et al.
Different links with the same Links-Gould invariant
具有相同链接-古尔德不变量的不同链接
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:Kanenobu;Taizo et al.
- 通讯作者:Taizo et al.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MATSUMOTO Shigenori其他文献
Flows of flowable Reeb homeomorphisms
可流动 Reeb 同胚流
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Warren Dicks;Makoto Sakuma;R. Goto;中島幸善;Toshio Sumi;Tatsuru Takakura;Shyuichi Izumiya;MATSUMOTO Shigenori - 通讯作者:
MATSUMOTO Shigenori
MATSUMOTO Shigenori的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MATSUMOTO Shigenori', 18)}}的其他基金
Study of foliations and discrete group actions
叶状结构和离散群体行为的研究
- 批准号:
20540096 - 财政年份:2008
- 资助金额:
$ 29.12万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Synthetic studies of foliations and discrete group actions
叶状结构和离散群体行为的综合研究
- 批准号:
13304005 - 财政年份:2001
- 资助金额:
$ 29.12万 - 项目类别:
Grant-in-Aid for Scientific Research (A)