Fusion of core-shell capsules serving as model nanoreactors

作为模型纳米反应器的核壳胶囊的融合

基本信息

项目摘要

In Nature, many chemical reactions take place in spatially confined environments. For instance within cells, such reactions can be coupled in time and space. Products of a given reaction executed in one reaction chamber are often the reactants or catalysts of a subsequent process. In multicompartment systems also incompatible reactions can be realized simultaneously. Artificial core/shell micro- and nanocapsules have thus far been mainly fabricated by self-assembly of amphiphilic block copolymers as polymeric vesicles (polymersomes), or by exploiting layer-by-layer deposition of polyelectrolytes on sacrificial solid particles. In FUSION-CAPS a new approach to realize nanocontainers via fusion of capsules of opposite charge is investigated in detail, which is based on capsules formed by the assembly of amphiphilic polyelectrolytes with comb-like graft architecture around oil droplets. The objectives of FUSION-CAPS are in particular (1) to understand the mechanism of formation and the properties of oil-filled core-shell polymer nanocapsules dispersed in water, (2) to unveil the mechanism of fusion of nanocapsules with opposite charges to form nanoreactors and the factors that govern it, and (3) to exploit the confined hydrophobic environments generated by capsule fusion for performing selected chemical reactions. The new route to nanoreactors proposed here via fusion of oil-filled nanocapsules will offer important fundamental insight into the formation dynamics of fused polymeric assemblies and may afford access to unprecedented control of stable hydrophobic reaction environments dispersed in aqueous media, which may possess advantages for green synthetic chemistry. In FUSION-CAPS we address the fabrication of capsules that are loaded with reagents and serve after fusion as nanoreactors, whose properties can be systematically tailored for the desired reactions. For selected fusing capsules, model processes, including energy transfer and collisional quenching, as well as chemical reactions, such as "click" and Diels-Adler reactions, will be studied in detail by fluorescence spectroscopy and time resolved fluorescence microscopy methods, among others. Finally, the impact of the confinement due to the dimensions and properties of the nanoreactors on these reactions will be unveiled.
在自然界中,许多化学反应发生在空间限制的环境中。例如,在细胞内,可以在时间和空间中耦合此类反应。在一个反应​​室中执行的给定反应的产物通常是随后过程的反应物或催化剂。在多截面系统中,也可以同时实现不兼容的反应。迄今为止,人工核/壳微粒和纳米胶囊主要是由AmphipHilic块共聚物自动组装为聚合物囊泡(聚合物组),或者是通过在牺牲固体颗粒上剥削多性电解质的一层沉积。在Fusion-Caps中,详细研究了一种新的方法,通过融合相反电荷的胶囊融合来实现纳米核心蛋白酶,该方法基于由两亲性聚电解质组装而成的胶囊,该胶囊围绕油脂围绕油脂而与梳状的移植物结构。尤其是(1)了解形成机制以及富含油的核壳聚合物纳米胶囊的特性,(2)公布纳米胶囊的融合机制,以相反的费用融合,以形成纳米性的纳米反应及其范围的因素,并剥削了(3)范围内的范围,并(3)构成了构成的范围,并且(3)构成了(3)的构成,并(3)构成了(3)的构成。反应。通过融合油的纳米胶囊提出的新的纳米反应器途径将为融合聚合物组件的形成动力学提供重要的基本洞察力,并可能能够访问对稳定疏水反应环境的前所未有的控制,从而在水平培养基中分散了,这可能具有绿色合成化学的优势。在Fusion-Caps中,我们解决了装有试剂的胶囊的制造,并在融合后作为纳米反应器,其特性可以系统地针对所需的反应进行系统定制。对于选定的融合胶囊,将通过荧光光谱和时间分析的荧光显微镜方法详细研究,包括能量传递和碰撞淬火以及化学反应(例如“ Click”和Diels-Adler反应)等化学反应。最后,由于纳米反应器的尺寸和特性对这些反应的限制和特性引起的限制的影响将揭晓。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Holger Schönherr其他文献

Professor Dr. Holger Schönherr的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

SiO2@LDH核壳晶种协同提升海工大掺量固废混凝土早期强度与抗氯离子渗透性的作用机制
  • 批准号:
    52371276
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
一维磁性金属核壳结构的电磁优化策略与性能增强机制
  • 批准号:
    22305057
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于CO2减排的疏水CuFe@SiO2核壳催化剂的构建及其合成气制备低碳醇构效关系研究
  • 批准号:
    22308266
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
核壳n-Al@MFe2O4基微波敏感点火药的构筑及其点火特性机理研究
  • 批准号:
    22375160
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
多支化核壳纳米结构在环氧树脂中的原位构筑及其强韧化机理研究
  • 批准号:
    52303097
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Next Generation of Biodegradable Core- Shell Capsules
下一代可生物降解核壳胶囊
  • 批准号:
    2889864
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Activation of metal-metal bonds in stable metal cluster compounds with closed-shell configuration.
具有闭壳结构的稳定金属簇化合物中金属-金属键的活化。
  • 批准号:
    22KJ2607
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Development of core/shell nano-composite magnetic particles by low oxygen powder metallurgy
低氧粉末冶金核/壳纳米复合磁性粒子的研制
  • 批准号:
    22KF0432
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Preparation of core-shell particles with bone regeneration and antibacterial properties for the treatment of bone defects.
具有骨再生和抗菌特性的核壳颗粒的制备用于治疗骨缺损。
  • 批准号:
    23K13845
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Synthesis of and New Functionality in Heteroepitaxial Gallate / Ferrite Core@Shell Nanoparticles
异质外延没食子酸盐/铁氧体核@壳纳米粒子的合成及其新功能
  • 批准号:
    2327667
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了