Fusion of core-shell capsules serving as model nanoreactors

作为模型纳米反应器的核壳胶囊的融合

基本信息

项目摘要

In Nature, many chemical reactions take place in spatially confined environments. For instance within cells, such reactions can be coupled in time and space. Products of a given reaction executed in one reaction chamber are often the reactants or catalysts of a subsequent process. In multicompartment systems also incompatible reactions can be realized simultaneously. Artificial core/shell micro- and nanocapsules have thus far been mainly fabricated by self-assembly of amphiphilic block copolymers as polymeric vesicles (polymersomes), or by exploiting layer-by-layer deposition of polyelectrolytes on sacrificial solid particles. In FUSION-CAPS a new approach to realize nanocontainers via fusion of capsules of opposite charge is investigated in detail, which is based on capsules formed by the assembly of amphiphilic polyelectrolytes with comb-like graft architecture around oil droplets. The objectives of FUSION-CAPS are in particular (1) to understand the mechanism of formation and the properties of oil-filled core-shell polymer nanocapsules dispersed in water, (2) to unveil the mechanism of fusion of nanocapsules with opposite charges to form nanoreactors and the factors that govern it, and (3) to exploit the confined hydrophobic environments generated by capsule fusion for performing selected chemical reactions. The new route to nanoreactors proposed here via fusion of oil-filled nanocapsules will offer important fundamental insight into the formation dynamics of fused polymeric assemblies and may afford access to unprecedented control of stable hydrophobic reaction environments dispersed in aqueous media, which may possess advantages for green synthetic chemistry. In FUSION-CAPS we address the fabrication of capsules that are loaded with reagents and serve after fusion as nanoreactors, whose properties can be systematically tailored for the desired reactions. For selected fusing capsules, model processes, including energy transfer and collisional quenching, as well as chemical reactions, such as "click" and Diels-Adler reactions, will be studied in detail by fluorescence spectroscopy and time resolved fluorescence microscopy methods, among others. Finally, the impact of the confinement due to the dimensions and properties of the nanoreactors on these reactions will be unveiled.
在自然界中,许多化学反应发生在空间有限的环境中。例如在细胞内,此类反应可以在时间和空间上耦合。在一个反应​​室中进行的给定反应的产物通常是后续过程的反应物或催化剂。在多室系统中,不相容的反应也可以同时实现。迄今为止,人造核/壳微胶囊和纳米胶囊主要通过两亲性嵌段共聚物作为聚合物囊泡(聚合物囊泡)的自组装,或通过利用聚电解质在牺牲固体颗粒上的逐层沉积来制造。在 FUSION-CAPS 中,详细研究了一种通过相反电荷胶囊融合来实现纳米容器的新方法,该方法基于两亲性聚电解质在油滴周围组装有梳状接枝结构而形成的胶囊。 FUSION-CAPS的目标尤其是(1)了解分散在水中的充油核壳聚合物纳米胶囊的形成机制和性质,(2)揭示具有相反电荷的纳米胶囊融合形成的机制纳米反应器及其控制因素,以及(3)利用胶囊融合产生的受限疏水环境来执行选定的化学反应。本文提出的通过充油纳米胶囊融合形成纳米反应器的新途径将为融合聚合物组件的形成动力学提供重要的基础见解,并可能提供对分散在水介质中的稳定疏水反应环境的前所未有的控制,这可能具有绿色环保的优势合成化学。在 FUSION-CAPS 中,我们致力于制造装载有试剂的胶囊,并在融合后用作纳米反应器,其特性可以根据所需的反应进行系统定制。对于选定的融合胶囊,模型过程,包括能量转移和碰撞猝灭,以及化学反应,如“点击”和狄尔斯-阿德勒反应,将通过荧光光谱和时间分辨荧光显微镜方法等进行详细研究。最后,将揭示纳米反应器的尺寸和性质引起的限制对这些反应的影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Holger Schönherr其他文献

Professor Dr. Holger Schönherr的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

核壳型咯菌腈控释体系防治小麦全生育期茎基腐病的释放行为及调控机制
  • 批准号:
    32372599
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于核壳能带工程的纳米长余辉材料载流子迁移调控
  • 批准号:
    52372158
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
SiO2@LDH核壳晶种协同提升海工大掺量固废混凝土早期强度与抗氯离子渗透性的作用机制
  • 批准号:
    52371276
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
微纳核壳结构填充体系构建及其对聚乳酸阻燃、抗老化、降解和循环的作用机制
  • 批准号:
    52373051
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
构筑多级孔疏水性分子筛@聚合物核壳材料协同强化苯系VOCs吸附/扩散机制研究
  • 批准号:
    52360028
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Next Generation of Biodegradable Core- Shell Capsules
下一代可生物降解核壳胶囊
  • 批准号:
    2889864
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Development of core/shell nano-composite magnetic particles by low oxygen powder metallurgy
低氧粉末冶金核/壳纳米复合磁性粒子的研制
  • 批准号:
    22KF0432
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Activation of metal-metal bonds in stable metal cluster compounds with closed-shell configuration.
具有闭壳结构的稳定金属簇化合物中金属-金属键的活化。
  • 批准号:
    22KJ2607
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Preparation of core-shell particles with bone regeneration and antibacterial properties for the treatment of bone defects.
具有骨再生和抗菌特性的核壳颗粒的制备用于治疗骨缺损。
  • 批准号:
    23K13845
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Synthesis of and New Functionality in Heteroepitaxial Gallate / Ferrite Core@Shell Nanoparticles
异质外延没食子酸盐/铁氧体核@壳纳米粒子的合成及其新功能
  • 批准号:
    2327667
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了