Multi-omics-approach in dairy cattle to analyse the impact of intra-uterine heat stress during late pregnancy on production and health traits with special consideration of metabolomics and epigenetics

奶牛多组学方法分析妊娠后期子宫内热应激对生产和健康特征的影响,特别考虑代谢组学和表观遗传学

基本信息

项目摘要

The project aims on the implementation of a multi-generation-animal-model. This model on a transgenerational level allows studying the impact of uterine heat stress during late pregnancy on productivity, health and metabolic parameters (metabolites) in dams and their offspring. In this regard, phenotypes will be related to genomic variants, gene expressions and DNA-methylation profiles, in order to analyse the different "omics Levels" including phenomics, metabolomics, (epi-)genomics and transcriptomics. Of specific relevance is the identification of epigenetic imprinting effects, which will be inferred using a holistic approach. Initially, genetic-statistical modelling bases on more than 20,000 genotyped dairy cows (including multiple generations) from so-called contract-herds, with phenotypes for production and health traits. Estimation of possible imprinting effects and the localisation of respective chromosome segments bases on the generation of a specific genomic relationship matrix, and of a (co)variance matrix for imprinting effects via SNP marker data. The modelling simultaneously allows an estimation of additive-genetic and dominance effects. The quantitative-genetic and genomic statistical analyses are carried out by the group of Prof. König from UGI (expertise in quantitative-genetic and genomic modelling). The identified genomic regions associated with imprinting effects are the basis for analyses on epigenetic processes at the sequence level, i.e., DNA-methylation and gene expression analyses via targeted methylome- and transcriptome-sequencing approaches. The analysis of dynamics in DNA-methylation and gene expression patterns will be studied in a multi-generation-animal-model. In this regard, we extend the phenome database with innovative dairy cow phenotypes from the research station “Hofgut Neumühle” (expertise in phenotyping metabolomics data). Blood samples will be collected in the three generations G0 (dam), G1 (daughter) and G2 (granddaughter), in order to depict the multi-organ transcriptome and epigenome. For epigenetically influenced genomic regions, the specific molecular genetic analyses of the existing DNA methylation patterns and transcriptome profiles are carried out via targeted-sequencing approaches, i.e. bisulphite- or cDNA-sequencing using next-generation sequencing technology. The sequence analyses are mainly carried out by the group of Dr. Krebs from TUM (expertise in next-generation-sequencing, transcriptome analysis).
该项目旨在实施多代动物模型,该模型可以在跨代水平上研究妊娠后期子宫热应激对母鼠及其后代的生产力、健康和代谢参数(代谢物)的影响。在这方面,表型将与基因组变异、基因表达和DNA甲基化谱相关,以便分析不同的“组学水平”,包括表型组学、代谢组学、(表观)基因组学和转录组学特别重要的是表观遗传印记效应的识别,该效应最初将基于来自所谓合同牛群的 20,000 多头基因型奶牛(包括多代)进行推断。生产和健康性状的表型基于特定基因组关系矩阵和(共)方差矩阵的生成来估计可能的印记效应和各个染色体片段的定位。该模型同时允许估计加性遗传和显性效应。定量遗传和基因组统计分析由 UGI 的 König 教授团队(定量遗传和基因组建模方面的专家)进行。 )。已确定的与印记效应相关的基因组区域是序列水平上表观遗传过程分析的基础,即通过靶向甲基化组和转录组测序方法进行 DNA 甲基化和基因表达分析。 DNA 甲基化和基因表达模式的动态将在多代动物模型中进行研究。在这方面,我们利用“Hofgut Neumühle”研究站(表型代谢组学数据的专业知识)的创新奶牛表型来扩展表型数据库。将采集G0(母亲)、G1(女儿)和G2(孙女)三代的血液样本,以描绘多器官转录组和表观基因组。受表观遗传影响的基因组区域,通过靶向测序方法对现有DNA甲基化模式和转录组图谱进行特定的分子遗传学分析,即使用下一代测序技术进行亚硫酸氢盐测序或cDNA测序。来自 TUM 的 Krebs 博士团队(下一代测序、转录组分析方面的专业知识)。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dr. Stefan Krebs其他文献

Dr. Stefan Krebs的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dr. Stefan Krebs', 18)}}的其他基金

Feinkartierung und Kandidatengenanalyse der bovinen Spinalen Muskelatrophie (SMA) beim Braunvieh
棕色瑞士牛脊髓性肌萎缩症(SMA)的精细定位和候选基因分析
  • 批准号:
    5432108
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

多尺度代谢互作网络分析新方法应用于阿尔兹海默病空间代谢组学研究
  • 批准号:
    82372087
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
基于高维组学数据的贝叶斯多水平stacking融合预测模型构建方法与应用研究
  • 批准号:
    82373688
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于超快成像的多模态超声影像组学精准诊断冠状动脉微血管疾病的方法研究
  • 批准号:
    U21A20387
  • 批准年份:
    2021
  • 资助金额:
    260 万元
  • 项目类别:

相似海外基金

Investigating the role of prion-mediated epigenetic regulation in yeast using an integrative approach of multi-omics
使用多组学综合方法研究酵母中朊病毒介导的表观遗传调控的作用
  • 批准号:
    2332782
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Multi-omics approach to investigate the immune-cholangiocyte spatial relationship to stratify liver diseases
多组学方法研究免疫-胆管细胞空间关系以对肝脏疾病进行分层
  • 批准号:
    2887376
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Multi-omic signatures of gut dysbiosis and cardiovascular comorbidities associated with HIV infection
与 HIV 感染相关的肠道菌群失调和心血管合并症的多组学特征
  • 批准号:
    10762411
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
A Systems Epidemiology Approach for Predicting Methotrexate Neurotoxicity in Pediatric Acute Leukemia
预测儿童急性白血病甲氨蝶呤神经毒性的系统流行病学方法
  • 批准号:
    10655716
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Multi-Omics for Maternal Health after Preeclampsia
先兆子痫后孕产妇健康的多组学
  • 批准号:
    10744684
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了