Coupled micromechanical modelling for the analysis and prevention of erosion in hydraulic and offshore infrastructures

用于分析和预防水力和海上基础设施侵蚀的耦合微机械建模

基本信息

  • 批准号:
    406907912
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    德国
  • 项目类别:
    Research Grants
  • 财政年份:
    2018
  • 资助国家:
    德国
  • 起止时间:
    2017-12-31 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

The scope of this project concerns the water-flow erosion of geomaterials in relation to the failure of civil engineering infrastructures with large socio-economic relevance such as flood protection dykes and offshore wind-farm foundations. We aim to clarify the underlying mechanisms by which such systems are stressed by a fluid flow until a local dislocation is finally generated within the solid medium, leading to a material loss and eventually to the mechanical instability of the whole structure.For this, we want to bridge the gap between the micromechanical phenomena at the grain scale and the macromechanical application for engineering problems by developing efficient large-scale coupled simulation models that reproduce directly the interactions between a fluid phase and the bonded assembly of solid particles. To this end, we will couple relevant simulation techniques for the fluid and solid phases (the Lattice Boltzmann Method and the Discrete Element Method, respectively).We envisage a progressive development of representative models at different scales, at first on a meso-scale to reproduce local phenomena in small setups of our laboratory tests, and then increasing in size and complexity up to the real scale of the engineering problems. The models shall feature a solid contact scheme for intergranular cohesion and transient material damage, which are key elements that may govern the macromechanical failure modes of geotechnical systems. A key task at the development stage will be the adaption of our algorithms for parallel computation by means of graphical processors and clusters.A first field of application shall be the assessment of erosion in hydraulic constructions such as a river levee. In this respect, we will develop detailed micromechanical models of typical erodibility assessment scenarios and analyse the dependencies of the resulting parameters on the granular properties and geotechnical characterizations of the soil. The validated scenarios shall then be upscaled to simulate locally their real-scale counterparts within a practical levee erosion problem.In parallel, the second field of application concerns the foundation structures for offshore wind-turbines. A detailed assessment of different scouring scenarios shall provide a basis for optimized foundation designs and help reduce the costs of windfarm developments. Besides, promising innovative foundations in the offshore field, such as the Suction Buckets, are still not well established due to largely unresolved questions concerning their dual interaction to both the marine soil and the pore water. The stability of the suction mechanism as well as the possibility of a localized hydraulic failure (piping) of the buckets during their installation are key questions that will be addressed here. The development of the intended models dealing with such phenomena from a micromechanical perspective shall provide answers which have been missing in the offshore practice so far.
该项目的范围涉及与具有重大社会经济相关性的土木工程基础设施(例如防洪堤和海上风电场基础)的失效有关的岩土材料的水流侵蚀。我们的目标是阐明此类系统受到流体流动的压力,直到最终在固体介质内产生局部位错,从而导致材料损失并最终导致整个结构的机械不稳定的潜在机制。为此,我们希望通过开发有效的大规模耦合模拟模型,直接再现流体相和固体颗粒的键合组件之间的相互作用,弥合晶粒尺度的微观力学现象与工程问题的宏观力学应用之间的差距。为此,我们将结合流体和固相的相关模拟技术(分别是格子玻尔兹曼方法和离散元方法)。我们设想逐步开发不同尺度的代表性模型,首先在中观尺度上在我们实验室测试的小型装置中重现局部现象,然后增加规模和复杂性直至工程问题的实际规模。该模型应具有用于粒间粘聚力和瞬态材料损伤的固体接触方案,这是控制岩土系统宏观力学失效模式的关键要素。开发阶段的一项关键任务是通过图形处理器和集群来调整我们的算法以进行并行计算。第一个应用领域是评估水工建筑(例如河堤)的侵蚀。在这方面,我们将开发典型可蚀性评估场景的详细微力学模型,并分析所得参数对土壤颗粒特性和岩土特征的依赖性。然后,验证的场景将被放大,以在实际的堤坝侵蚀问题中本地模拟真实规模的对应场景。同时,第二个应用领域涉及海上风力涡轮机的基础结构。对不同冲刷场景的详细评估将为优化基础设计提供依据,并有助于降低风电场开发成本。此外,由于吸力桶与海洋土壤和孔隙水的双重相互作用的问题很大程度上尚未解决,海上领域有前途的创新基础(例如吸力桶)仍然没有得到很好的建立。抽吸机构的稳定性以及铲斗在安装过程中出现局部液压故障(管道)的可能性是这里要解决的关键问题。从微观机械角度处理此类现象的预期模型的开发将提供迄今为止在海上实践中缺失的答案。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dr.-Ing. Pablo Cuéllar其他文献

Dr.-Ing. Pablo Cuéllar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

面向超微生物物质检测应用的磁致伸缩微机械换能器件基础问题研究
  • 批准号:
    62304003
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
高灵敏度PT对称微机械压电传感器研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
噪声环境下耦合非线性微机械谐振器中的能量传递与调控
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于磁响应性仿生基质形变的周期性微机械力载荷促进周围神经再生修复的策略及机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
耦合式微机械谐振器基于非线性的频率波动抑制方法及应用研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    61 万元
  • 项目类别:
    面上项目

相似海外基金

PhD Studentship in Micromechanical Modelling of Energetic Crystals for Estimating the Thermomechanical Response at High Strain Rates
含能晶体微机械建模博士生,用于估计高应变率下的热机械响应
  • 批准号:
    2740323
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Studentship
Micromechanical Creep - Improving Experimental and modelling capabilities
微机械蠕变 - 提高实验和建模能力
  • 批准号:
    2118014
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Studentship
Visualisation and micromechanical modelling of internal damage processes due to cyclically loaded high performance concretes, with emphasis on the hygral and thermal boundary conditions
循环加载高性能混凝土造成的内部损伤过程的可视化和微机械建模,重点关注湿和热边界条件
  • 批准号:
    353981539
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Lung micromechanical modelling using in vivo regional pulmonary functional magnetic resonance imaging
使用体内局部肺功能磁共振成像进行肺微机械建模
  • 批准号:
    402091-2011
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Lung micromechanical modelling using in vivo regional pulmonary functional magnetic resonance imaging
使用体内局部肺功能磁共振成像进行肺微机械建模
  • 批准号:
    402091-2011
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了