Investigating the Molecular Crosstalk of Cellulose and Hemicellulose Perception in Filamentous Fungi

研究丝状真菌中纤维素和半纤维素感知的分子串扰

基本信息

项目摘要

Due to their role in biomass mineralization, fungi are indispensable for the global carbon cycle. In addition, filamentous fungi are of great economic importance as source of enzymes for the biorefinery. The production of plant cell wall degrading enzymes by fungi is finely tuned to the composition of the biomass. The basis for this are molecular signaling cascades leading to the perception of sugars liberated from the polysaccharides. However, the signaling pathways are still largely a black box to us, hampering the industrial strain improvement for enzyme, cellulosic fuel and chemical production by rational design. Biomass decomposition for biorefinery will highly benefit from an increased understanding of how fungi perceive and integrate the signals coming from the substrate and fine-tune their secreted enzymes to exactly fit the composition of the biomass at hand. In our attempts to elucidate plant cell wall perception in the filamentous Ascomycete Neurospora crassa, we have obtained evidence that not all sugars are perceived independently, but that some pathways overlap such that a reciprocal inhibition can occur, as is the case for cellulose and mannan signaling. Moreover, we found this crosstalk to be conserved in the industrially relevant species Trichoderma reesei and Myceliophthora thermophila. Since mannans are present in most lignocellulosic biomass and are very difficult to be selectively removed from cellulose and other hemicelluloses by chemical (pre-)treatments, the crosstalk has to be dealt with by other methods. A promising solution to this problem might be genetic engineering of the signaling pathways in the fungal production hosts. In the current application, we therefore propose a research program to elucidate the underlying mechanisms of this crosstalk in N. crassa, T. reesei and M. thermophila with the goal to relief them from this potential inhibition by genetic engineering and achieve unrestrained cellulase production. Moreover, the elucidation of the molecular mechanisms controlling these events will also strongly fasten future industrial fungal strain engineering efforts for the biorefinery.
由于它们在生物质矿化中的作用,真菌对于全球碳循环是必不可少的。此外,丝状真菌作为生物填料的酶来源非常重要。真菌通过真菌降解酶的产生可将生物量的组成细微调整。其基础是分子信号传导级联,导致从多糖释放的糖感知。但是,信号通路对我们来说仍然是一个黑匣子,这阻碍了通过合理设计的酶,纤维素燃料和化学生产的工业应变改善。生物量的生物量分解将通过对真菌如何感知和整合来自底物的信号并对其分泌的酶进行微调以完全适合手头生物质的组成,从而使生物量分解。为了阐明丝状子宫菌神经孢子虫中植物细胞壁的感知,我们获得了证据,表明并非所有糖都独立感知,但是某些途径重叠,因此可以发生相互抑制,就像纤维素和曼南信号的情况一样。此外,我们发现该串扰在与工业相关的物种Trichoderma Reesei和Myceliophthora Thermophila中是保守的。由于大多数木质纤维素生物量存在Mannans,并且很难通过化学(预 - )处理从纤维素和其他半纤维素中选择性去除,因此必须通过其他方法处理串扰。解决此问题的一个有希望的解决方案可能是真菌生产宿主中信号通路的基因工程。因此,在当前的应用中,我们提出了一项研究计划,以阐明N. Crassa,T。Reesei和M. thermophila在N. Crassa,T。Reesei和M. thermophila中的潜在机制,目的是使他们免于基因工程的潜在抑制,并实现无限纤维素酶的产生。此外,控制这些事件的分子机制的阐明还将强烈巩固生物填充剂的未来工业真菌劳累工程工作。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. J. Philipp Benz其他文献

Professor Dr. J. Philipp Benz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. J. Philipp Benz', 18)}}的其他基金

Understanding the molecular traits of multi-organismic communication in beneficial tree-microbe associations
了解有益的树木-微生物关联中多生物体通讯的分子特征
  • 批准号:
    445525687
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

基于TPO与TNFα通路的crosstalk研究地榆止血功效成分TMEA/DMAG共同调控血小板生成稳态的分子机制
  • 批准号:
    82374073
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
抗核糖体P蛋白抗体干扰神经元—小胶质细胞crosstalk诱导狼疮脑病的分子机制
  • 批准号:
    U22A20309
  • 批准年份:
    2022
  • 资助金额:
    255.00 万元
  • 项目类别:
    联合基金项目
豨莶草酒炙调控“TLR4和Notch1信号crosstalk”增强抗类风湿性关节炎的物质基础和分子机制研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
基于crosstalk和蛋白互作揭示红曲菌中桔霉素和红曲色素生物合成相互影响的分子机理
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目

相似海外基金

Actin gating of crosstalk between Rho GTPases in cell migration
细胞迁移中 Rho GTP 酶之间串扰的肌动蛋白门控
  • 批准号:
    10736927
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Type 2 immunity: a primitive response to epithelial injury that shapes bone marrow and lung myeloid crosstalk
2型免疫:对上皮损伤的原始反应,形成骨髓和肺髓细胞串扰
  • 批准号:
    10577950
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Defining mechanisms of metabolic-epigenetic crosstalk that drive glioma initiation
定义驱动神经胶质瘤发生的代谢-表观遗传串扰机制
  • 批准号:
    10581192
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Compartmentalized signaling and crosstalk in airway myocytes
气道肌细胞中的区室化信号传导和串扰
  • 批准号:
    10718208
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Chemical strategies to investigate biochemical crosstalk in human chromatin
研究人类染色质生化串扰的化学策略
  • 批准号:
    10621634
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了