複数の離散凸関数に対する最小化アルゴリズムの研究
多个离散凸函数的最小化算法研究
基本信息
- 批准号:23K16842
- 负责人:
- 金额:$ 2.91万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Early-Career Scientists
- 财政年份:2023
- 资助国家:日本
- 起止时间:2023-04-01 至 2028-03-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
南川 智都其他文献
Algorithms for Separable Convex Resource Allocation Problem with L1-distance Constraint
带L1距离约束的可分离凸资源分配问题算法
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
南川 智都;塩浦 昭義 - 通讯作者:
塩浦 昭義
メモリーレスBroyden 公式族に基づいた非厳密Newton 型近接勾配法
基于无记忆Broyden公式族的不精确牛顿型邻近梯度法
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
南川 智都;塩浦 昭義;中山舜民 成島康史矢部博 - 通讯作者:
中山舜民 成島康史矢部博
ジャンプシステムおよびデルタマトロイド上の最適化問題に対する貪欲アルゴリズムの測地線性質
跳跃系统和三角阵优化问题的贪心算法的测地线性质
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Nobutaka Shimizu;Nobutaka Shimizu;笛木; 正雄;笛木 正雄;南川 智都 - 通讯作者:
南川 智都
改良された敵対的生成ネットワークの学習法の改善
改进生成对抗网络的改进学习方法
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
南川 智都;塩浦 昭義;柿沼ひいろ,竹田晃人 - 通讯作者:
柿沼ひいろ,竹田晃人
南川 智都的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('南川 智都', 18)}}的其他基金
M凸関数最小化問題に対する高性能近似アルゴリズムの構築
M凸函数最小化问题的高性能逼近算法的构建
- 批准号:
21K21290 - 财政年份:2021
- 资助金额:
$ 2.91万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
相似海外基金
整凸性を軸とする離散凸解析の研究
以有序凸性为中心的离散凸性分析研究
- 批准号:
23K11001 - 财政年份:2023
- 资助金额:
$ 2.91万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Computation of Diverse Solutions in Discrete Convex Optimization Problems
离散凸优化问题的多样解的计算
- 批准号:
23K10995 - 财政年份:2023
- 资助金额:
$ 2.91万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
M凸関数最小化問題に対する高性能近似アルゴリズムの構築
M凸函数最小化问题的高性能逼近算法的构建
- 批准号:
21K21290 - 财政年份:2021
- 资助金额:
$ 2.91万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Discrete convex approximation on non-linear discrete optimization
非线性离散优化的离散凸逼近
- 批准号:
21K04533 - 财政年份:2021
- 资助金额:
$ 2.91万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
離散凸解析による資源配分問題の研究
基于离散凸分析的资源分配问题研究
- 批准号:
20K11697 - 财政年份:2020
- 资助金额:
$ 2.91万 - 项目类别:
Grant-in-Aid for Scientific Research (C)