Bayesian adaptive robust adjustment of multivariate geodetic measurement processeswith data gaps and nonstationary colored noise
具有数据间隙和非平稳有色噪声的多元大地测量过程的贝叶斯自适应鲁棒调整
基本信息
- 批准号:386369985
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2018
- 资助国家:德国
- 起止时间:2017-12-31 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Modern geodetic sensors often produce multiple spatial time series which contain huge numbers of measurements, numerous outliers as well as data gaps, and random errors that are characterized by considerable auto- andcross-correlations (i.e., colored noise). In view of these adversities, which cannot be resolved by current geodetic data analysis tools in their entirety, we intend to develop both classical and Bayesian statistics in connection with adjustment procedures that allow for a robust and efficient estimation of parametric models from such spatio-temporal measurement series. To facilitate simultaneous robustness and statistical as well as computational efficiency, we employ on the one hand the principle of expectation maximization (EM). This enables an imputation of the data gaps and concurrently an adaptive estimation of the parameters of the functional model, of the coefficients of a vector autoregressive moving-average (VARMA) colored noise model, and of the shape parameters of the underlying error distribution. The latter is defined by a multivariate, scaled (Student) t-distribution and involves a data-adaptable degree of freedom and scale factor. By estimating these quantities, the shape and in particular the tail characteristics of the probability densityfunction is adapted to the actual error and outlier characteristics present in the data. In a subsequent work step, we will also allow for dynamic changes of the parameters of the functional and of the noise model. Finally, we investigate Bayesian procedures based on Mean-Field Variational Bayes and Markov Chain Monte Carlo (MCMC) techniques, which allow for the incorporation of prior information regarding the parameters of the functional model, of the VARMA model and of the underlying t-distribution into the adaptive robust adjustment. Since the adjustment yields detailed probabilistic information regarding all of the unknown model parameters, we will for instance also be able to rigorously test hypotheses about the assumed error distribution, about suspected auto-/cross-correlation patterns, and about the time-variability of such patterns. We apply the static version of the general observation model and estimation procedure to adjustment problems based on geodetic data sets stemming from geo-referencing of static multi-sensor systems. Their referencing sensors can be 3D positioning sensors, like GNSS equipment or tacheometer. The dynamic version is applied to loading test data stemming from an arch bridge. Due to the anticipated high level of flexibility and efficiency of the methods, we expect them to be applicable also to other types of geodetic sensor data, as obtained e.g. in satellite geodesy.
现代大地测量传感器通常会产生多个空间时间序列,其中包含大量测量值、大量异常值以及数据间隙以及以相当大的自相关和互相关(即有色噪声)为特征的随机误差。鉴于当前的大地测量数据分析工具无法完全解决这些逆境,我们打算开发与调整程序相关的经典统计和贝叶斯统计,以便从此类时空参数模型中进行稳健且有效的估计测量系列。为了同时提高鲁棒性和统计以及计算效率,我们一方面采用期望最大化(EM)原则。这使得能够对数据间隙进行插补,同时对函数模型的参数、向量自回归移动平均(VARMA)有色噪声模型的系数以及基础误差分布的形状参数进行自适应估计。后者由多元缩放(学生)t 分布定义,并涉及数据适应性自由度和比例因子。通过估计这些量,概率密度函数的形状(特别是尾部特征)适应数据中存在的实际误差和异常值特征。在后续工作步骤中,我们还将允许函数和噪声模型的参数动态变化。最后,我们研究基于平均场变分贝叶斯和马尔可夫链蒙特卡罗 (MCMC) 技术的贝叶斯过程,该技术允许合并有关函数模型、VARMA 模型和底层 t 分布参数的先验信息进入自适应鲁棒调整。由于调整会产生有关所有未知模型参数的详细概率信息,因此我们还能够严格测试有关假设误差分布、可疑自相关/互相关模式以及此类模型的时间变异性的假设。模式。我们将一般观测模型和估计程序的静态版本应用于基于静态多传感器系统地理参考产生的大地测量数据集的调整问题。它们的参考传感器可以是 3D 定位传感器,例如 GNSS 设备或测距仪。动态版本适用于加载来自拱桥的测试数据。由于这些方法预期具有高水平的灵活性和效率,我们希望它们也适用于其他类型的大地测量传感器数据,例如获得的数据。在卫星大地测量学中。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dr.-Ing. Hamza Alkhatib其他文献
Dr.-Ing. Hamza Alkhatib的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dr.-Ing. Hamza Alkhatib', 18)}}的其他基金
Real Estate Valuation in Areas with Few Transactions Using a Robust Bayesian Hedonic Model
使用鲁棒贝叶斯特征模型对交易较少地区的房地产进行估值
- 批准号:
260668532 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
HIF-1α调控心脏LYVE1+常驻巨噬细胞谷氨酰胺代谢促进适应性心脏重塑的作用机制研究
- 批准号:82300447
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
力学行为演变机理下泡沫沥青新装置适应性设计方法研究
- 批准号:52375230
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
氨基供体驱动ω-转氨酶合成手性胺的适应性催化机制及理性设计研究
- 批准号:22308137
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
南海中尺度涡AI预报及适应性观测策略研究
- 批准号:42376191
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
社交媒体环境下基于深度强化学习的适应性在线资产配置策略研究
- 批准号:72371080
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
相似海外基金
VIPAuto: Robust and Adaptive Visual Perception for Automated Vehicles in Complex Dynamic Scenes
VIPAuto:复杂动态场景中自动驾驶车辆的鲁棒自适应视觉感知
- 批准号:
EP/Y015878/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Fellowship
CAREER: Risk-Based Methods for Robust, Adaptive, and Equitable Flood Risk Management in a Changing Climate
职业:在气候变化中实现稳健、适应性和公平的洪水风险管理的基于风险的方法
- 批准号:
2238060 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: Enabling Robust and Adaptive Architectures through a Decoupled Security-Centric Hardware/Software Stack
职业:通过解耦的以安全为中心的硬件/软件堆栈实现鲁棒性和自适应架构
- 批准号:
2238548 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
Commensal bacteria as vehicles for robust mucosal vaccination against lung pathogens
共生细菌作为针对肺部病原体的强力粘膜疫苗接种的载体
- 批准号:
10749817 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Exploiting Geometries of Learning for Fast, Adaptive and Robust AI
利用学习几何实现快速、自适应和鲁棒的人工智能
- 批准号:
DP230101176 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Discovery Projects