Finite-Temperature Dynamics with Matrix Product State and Cluster Approaches

使用矩阵积状态和簇方法的有限温度动力学

基本信息

项目摘要

A variety of experimental probes is available for the investigation of dynamic susceptibilities. By indicating the allowed excitations of a system, these quantities often permit us to establish the properties of the quantum state. To do so, we however also need theoretical access to the spectra of appropriate effective low-energy models. The present proposal aims at extending the range of available numerical tools for this task. In particular, we plan to address finite temperatures in order to investigate signatures of ordered phases as opposed to disordered high-temperature states. Matrix Product State approaches (MPS) and cluster techniques like the Cluster Perturbation Theory (CPT) and the Variational Cluster Approximation (VCA) can be used to treat strongly correlated quantum systems at finite temperatures, but have so far mostly been applied to the ground state at T = 0. In this project, we plan to extend the range of applicability of both methods to treat spin and electron systems at finite temperatures in two-dimensional (2D) and quasi-2D geometries, to compare their predictive power, and to use MPS approaches at finite temperature as cluster solver. This will lead to cluster methods for 2D systems working at finite temperature and being more reliable since the results will be based on larger clusters. In particular we plan to focus on finite-temperature dynamical spectral functions, which are directly accessible via experiments like, e.g., neutron scattering, angle-resolved photo-electron spectroscopy (ARPES) or resonant inelastic X-ray scattering (RIXS). The goal is to predict signatures expected for spin or electron systems (e.g., iridate systems) in topologically nontrivial phases and to investigate them as they go through phase transitions from trivial to nontrivial states.
可用于研究动态敏感性的各种实验探针。通过指示系统的激发,这些数量通常使我们能够确定量子状态的特性。为此,我们还需要理论上访问适当有效的低能模型的光谱。本提案旨在扩展此任务的可用数值工具的范围。特别是,我们计划解决有限温度,以研究有序阶段的特征,而不是高温状态。矩阵产品状态方法(MPS)和集群技术(例如簇扰动理论(CPT)和变化群集近似(VCA)可用于治疗在有限温度下在有限的温度下在有限的温度下进行密切相关的量子系统,但到目前为止,在t = 0的基础状态下,在此项目中都应用了两种范围。 (2d)和Quasi-2d几何形状,以比较其预测能力,并在有限温度下使用MPS方法作为群集求解器。这将导致在有限温度下工作的2D系统的群集方法,并且更可靠,因为结果将基于较大的簇。特别是,我们计划专注于有限的动态频谱函数,这些函数可以通过实验直接访问,例如,例如中子散射,角度分辨光电子光谱(ARPES)或谐振剂X射线散射(RIXS)。目的是预测拓扑或电子系统(例如,偶然系统)的签名,并在拓扑阶段进行了调查,并在它们经过从琐事到非平凡状态的相变时进行调查。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professorin Dr. Maria Daghofer其他文献

Professorin Dr. Maria Daghofer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professorin Dr. Maria Daghofer', 18)}}的其他基金

Spin-orbital entanglement and dynamic properties of spin-orbital systems
自旋轨道纠缠和自旋轨道系统的动力学性质
  • 批准号:
    153396866
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Independent Junior Research Groups

相似国自然基金

量子信息方法看量子相变:有限温度、动力学、及序参量
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    62 万元
  • 项目类别:
    面上项目
基于有限温度交换-关联泛函的温稠密氖状态方程理论模拟及模型评估
  • 批准号:
    11902297
  • 批准年份:
    2019
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
相对论重离子碰撞中的流体力学研究
  • 批准号:
    11205150
  • 批准年份:
    2012
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
高密QCD相结构的普遍性研究和在冷原子体系中的模拟
  • 批准号:
    11275002
  • 批准年份:
    2012
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
应用分子动力学格波理论研究NiAl合金的力学性质
  • 批准号:
    11172303
  • 批准年份:
    2011
  • 资助金额:
    70.0 万元
  • 项目类别:
    面上项目

相似海外基金

Clarification of reaction-driven flows at high-temperature bimelt interfaces by electrochemical impedance spectroscopy and dynamics calculations
通过电化学阻抗谱和动力学计算澄清高温双熔体界面处的反应驱动流
  • 批准号:
    23H01737
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Elucidation of dynamics of complex fluid droplet levitated on high temperature surface and their development into process intensification
阐明高温表面悬浮复杂液滴的动力学及其发展过程强化
  • 批准号:
    23K13592
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Thermo-dynamics analysis of bio-materials using 3D temperature imaging
使用 3D 温度成像对生物材料进行热力学分析
  • 批准号:
    23H01817
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Developing serial crystallography for room temperature structure & dynamics
开发室温结构的系列晶体学
  • 批准号:
    FT220100405
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    ARC Future Fellowships
Finite Temperature Simulation of Non-Markovian Quantum Dynamics in Condensed Phase using Quantum Computers
使用量子计算机对凝聚相非马尔可夫量子动力学进行有限温度模拟
  • 批准号:
    2320328
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了