I-Corps: Translation potential of using machine learning to predict oxaliplatin chemotherapy benefit in early colon cancer

I-Corps:利用机器学习预测奥沙利铂化疗对早期结肠癌疗效的转化潜力

基本信息

  • 批准号:
    2425300
  • 负责人:
  • 金额:
    $ 5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-04-15 至 2025-03-31
  • 项目状态:
    未结题

项目摘要

The broader impact of this I-Corps project is the development of a machine learning model to predict the efficacy of one type of chemotherapy, oxaliplatin, for colon cancer patients. Colorectal cancer is the third most common cancer and ranks second in cancer death. In 2020, the estimated incidences of colorectal cancer were 1.9 million, and these are expected to increase 60% by 2030. Most colon cancer patients receive post-surgery chemotherapy (adjuvant therapy) to prevent cancer recurrence. Oxaliplatin is the most widely used chemotherapy agent in colorectal cancers to prevent recurrence, accounting for around 10% of all cancer patients. However, more than half of the patients do not benefit from oxaliplatin. Instead, oxaliplatin leads to disabling and lasting neuropathy that deteriorates the patient's quality of life and results in substantial financial burdens ($18,000 per patient per year) due to treatments for unnecessary side effects. Accurately predicting oxaliplatin benefits may enable oncologists to choose among Food and Drug Administration-approved regimens to maximize efficacy and minimize adverse effects by limiting oxaliplatin to patients who likely will benefit. This solution may improve the outcomes for colon cancer patients receiving post-surgery adjuvant therapy worldwide.This I-Corps project utilizes experiential learning coupled with a first-hand investigation of the industry ecosystem to assess the translation potential of the technology. The solution is based on the development of a machine learning model using the colon cancer transcriptome as an input feature to predict the efficacy of oxaliplatin-based chemotherapy regimens for the treatment of colon cancer. Patients with resected high-risk stage II/III colon cancer usually receive a curative adjuvant chemotherapy to prevent recurrence. However, the chemotherapy, oxaliplatin, may lead to acute and chronic disabling peripheral neurotoxicity. The machine learning model was developed to predict the cancer cells’ drug sensitivity based on patient’s individualized transcriptomic data. In an effort to de-escalate chemotherapy and avoid unnecessary side effects, clinical trials were conducted to examine whether a shorter duration can maintain efficacy and yet reduce oxaliplatin-induced neurotoxicity. The model, referred to as the colon oxaliplatin signature model, was shown to be predictive of oxaliplatin benefits in the colon cancer adjuvant setting in a double-blinded clinical trial of 1,065 colon cancer patients with both transcriptomic data and survival outcomes.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该 I-Corps 项目的更广泛影响是开发一种机器学习模型来预测一种化疗药物奥沙利铂对结肠癌患者的疗效。结直肠癌是第三大常见癌症,在癌症死亡中排名第二。 2020年,结直肠癌的发病率估计为190万,预计到2030年将增加60%。大多数结肠癌患者接受术后化疗(辅助治疗)以预防癌症奥沙利铂是预防结直肠癌复发的最广泛使用的化疗药物,约占所有癌症患者的 10%,然而,超过一半的患者并不能从奥沙利铂中获益,相反,奥沙利铂会导致致残和持久的神经病变。由于准确预测奥沙利铂不必要的副作用,这会恶化患者的生活质量并导致巨大的经济负担(每位患者每年 18,000 美元)。好处可能使肿瘤学家能够在美国食品和药物管理局批准的治疗方案中进行选择,通过将奥沙利铂限制在可能受益的患者身上,从而最大限度地提高疗效并最大限度地减少副作用。该解决方案可能会改善全球接受术后辅助治疗的结肠癌患者的结果。 I-Corps 项目利用体验式学习以及对行业生态系统的第一手调查来评估该技术的转化潜力,该解决方案基于使用结肠癌转录组作为预测输入特征的机器学习模型的开发。功效用于治疗结肠癌的基于奥沙利铂的化疗方案的研究 已切除的高危 II/III 期结肠癌患者通常会接受治愈性辅助化疗以预防复发,然而,奥沙利铂化疗可能会导致急性和慢性外周损伤。开发机器学习模型是为了根据患者的个体化转录组数据预测癌细胞的药物敏感性,为了减少化疗并避免不必要的副作用,进行了临床试验来检查是否存在神经毒性。更短的持续时间可以保持疗效,同时减少奥沙利铂引起的神经毒性。该模型被称为结肠奥沙利铂特征模型,在一项针对 1,065 名结肠癌患者的双盲临床试验中被证明可以预测奥沙利铂在结肠癌辅助治疗中的益处。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lujia Chen其他文献

Autistic-like behavior, spontaneous seizures, and increased neuronal excitability in a Scn8a mouse model
Scn8a 小鼠模型中的自闭症样行为、自发性癫痫发作和神经元兴奋性增加
  • DOI:
    10.1038/s41386-021-00985-9
  • 发表时间:
    2021-03-03
  • 期刊:
  • 影响因子:
    7.6
  • 作者:
    Jennifer C. Wong;S. Grieco;Karoni Dutt;Lujia Chen;Jacquelyn T. Thelin;G. A. S. Inglis;Shangrila Parvin;S. Garraway;Xiangmin Xu;A. L. Goldin;A. Escayg
  • 通讯作者:
    A. Escayg
Short-duration versus 1-year adjuvant trastuzumab in early HER2 positive breast cancer: A meta-analysis of randomized controlled trials.
早期 HER2 阳性乳腺癌的短期辅助曲妥珠单抗与 1 年辅助曲妥珠单抗:随机对照试验的荟萃分析。
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    11.8
  • 作者:
    Lujia Chen;Wenqi Zhou;Xiaolei Hu;Man Yi;Changsheng Ye;Guangyu Yao
  • 通讯作者:
    Guangyu Yao
Characterization of Au ring microelectrode with cyclic voltammetry and AC impedance spectroscopy
用循环伏安法和交流阻抗谱表征金环微电极
Differential progression of complex culprit stenoses in patients with stable and unstable angina pectoris.
稳定型和不稳定型心绞痛患者复杂罪魁祸首的不同进展。
Lip Morphology and Aesthetics: Study Review and Prospects in Plastic Surgery
唇形态与美学:整形外科研究回顾与展望
  • DOI:
    10.1007/s00266-018-1268-x
  • 发表时间:
    2018-11-21
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Siqiao Wu;Bailin Pan;Yang An;Junxue An;Lujia Chen;Dong Li
  • 通讯作者:
    Dong Li

Lujia Chen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

植物非编码RNA的潜在翻译产物及其调控网络研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
以翻译起始因子eIF3为靶点系统鉴定与验证食管癌中具有潜在编码功能的非编码RNA
  • 批准号:
    81672459
  • 批准年份:
    2016
  • 资助金额:
    57.0 万元
  • 项目类别:
    面上项目
潜在抑癌基因eIF4E3二重调控Snail/E-cad轴的翻译表达抑制宫颈癌EMT和侵袭转移
  • 批准号:
    81572566
  • 批准年份:
    2015
  • 资助金额:
    57.0 万元
  • 项目类别:
    面上项目
基于潜在语义对偶空间的新词翻译自动识别方法研究
  • 批准号:
    61462045
  • 批准年份:
    2014
  • 资助金额:
    45.0 万元
  • 项目类别:
    地区科学基金项目
青蒿素潜在靶标蛋白——TCTP过表达及基因敲除的研究
  • 批准号:
    30271536
  • 批准年份:
    2002
  • 资助金额:
    18.0 万元
  • 项目类别:
    面上项目

相似海外基金

I-Corps: Translation potential of Advanced Material Composites for Electromagnetic Interference Shielding
I-Corps:用于电磁干扰屏蔽的先进复合材料的转化潜力
  • 批准号:
    2403871
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
I-Corps: Translation Potential of Electrochemical Gold Recovery from Electronic Waste
I-Corps:从电子废物中电化学回收黄金的转化潜力
  • 批准号:
    2412557
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
I-Corps: Translation Potential of Bidirectional Neural Communication for Extended Reality Technologies
I-Corps:双向神经通信在扩展现实技术中的转化潜力
  • 批准号:
    2419142
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
I-Corps: Translation potential of a miniaturized biotechnology platform for nucleic acid extraction, purification, and library preparation
I-Corps:用于核酸提取、纯化和文库制备的小型生物技术平台的转化潜力
  • 批准号:
    2421022
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
I-Corps: Translation Potential of a Minimally Invasive Continuum Surgical Robot for the Eye/Ear
I-Corps:眼/耳微创连续手术机器人的翻译潜力
  • 批准号:
    2420989
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了