I-Corps: Vision analysis system using inferred three-dimensional data to analyze and correct a user’s pose in relation to 3D space
I-Corps:视觉分析系统,使用推断的三维数据来分析和纠正用户相对于 3D 空间的姿势
基本信息
- 批准号:2403992
- 负责人:
- 金额:$ 5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-02-01 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The broader impact/commercial potential of this I-Corps project is the development of rehabilitative technology, focusing on augmenting home-based exercise regimens for precise mobility recovery. Currently, there is a growing need for accessible and consistent physical therapy support while current tools lead to poor adherence and ultimately poor recovery outcomes. The proposed technology provides an analysis of the human body to encourage recovery for physical therapy patients both in-clinic and at home through audio/visual feedback and corrective coaching. The technology is designed to provide instantaneous corrections and synchronized progress with care providers, while the pose analysis and real-time guidance system provides confidence during exercise sessions. The goal is to facilitate better health outcomes and improved quality of life by improving access to personalized rehabilitation, potentially reducing healthcare disparities and cost of knowledgeable, accessible care. This I-Corps project is based on the development of a software tool for physical rehabilitation, that addresses independently performed exercises for patients in physical therapy. Currently, clinicians are limited by home exercise tools that do not have customizable features. The proposed vision analysis system uses inferred three-dimensional data to analyze and correct a user’s pose in relation to 3D space. The technology includes a machine learning (ML) algorithm to dynamically extrapolate human pose insights and offers corrective action as needed. In addition, the proposed tool leverages a deep-learning approach that continues to improve through learning from outcomes and identifying engaging techniques for continued recovery. The goal is to provide high-precision support at-home that complements physical recovery and directly impacts mobility and therapy objectives. The proposed technology provides real-time guidance, corrective coaching, and integrated progress tracking, which may significantly improve the effectiveness of home-based exercises.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该 I-Corps 项目更广泛的影响/商业潜力是康复技术的开发,重点是增强家庭锻炼方案以实现精确的活动恢复。目前,在当前工具领先的情况下,对可访问和一致的物理治疗支持的需求不断增长。所提出的技术提供了对人体的分析,通过音频/视觉反馈和纠正指导来鼓励物理治疗患者的康复。和与护理提供者同步进展,而姿势分析和实时指导系统在运动过程中提供信心,目标是通过改善个性化康复的机会来促进更好的健康结果和提高生活质量,从而可能减少医疗保健差异和知识成本。该 I-Corps 项目基于物理康复软件工具的开发,旨在解决患者在物理治疗中独立进行的锻炼,目前,指挥官受到不具有可定制功能的家庭锻炼工具的限制。视觉分析系统使用推断该技术包括机器学习 (ML) 算法,可动态推断人体姿势洞察并根据需要提供纠正措施。通过从结果中学习并确定持续康复的参与技术来不断改进的学习方法,其目标是提供高精度的家庭支持,以补充身体康复并直接影响活动能力和治疗目标。 、纠正性辅导和综合进度跟踪,这可以显着提高家庭练习的有效性。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christopher Heylman其他文献
Christopher Heylman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
脑电、磁共振多模态大尺度网络分析方法及其在运动想象机制、状态评估中的应用研究
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
面向有约束复杂随动系统控制的运动想象脑电信号动态意图解析研究
- 批准号:51605419
- 批准年份:2016
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于脑网络的运动想象脑机接口盲被试的特征提取算法研究
- 批准号:61603344
- 批准年份:2016
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
统计结构学习方法及其在个体差异脑信号分析中的应用研究
- 批准号:61673312
- 批准年份:2016
- 资助金额:16.0 万元
- 项目类别:面上项目
社会记忆下台湾居民身份想象及其空间行为分异研究
- 批准号:41571142
- 批准年份:2015
- 资助金额:41.0 万元
- 项目类别:面上项目
相似海外基金
2022BBSRC-NSF/BIO Generating New Network Analysis Tools for Elucidating the Functional Logic of 3D Vision Circuits of the Drosophila Brain
2022BBSRC-NSF/BIO 生成新的网络分析工具来阐明果蝇大脑 3D 视觉电路的功能逻辑
- 批准号:
BB/Y000234/1 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Research Grant
Achieving Model Fairness on Automatic Primary Open-angle Glaucoma Screening
实现自动原发性开角型青光眼筛查的模型公平性
- 批准号:
10726928 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Recurrent Circuit Model of Neural Response Dynamics in V1
V1 中神经反应动力学的循环电路模型
- 批准号:
10710967 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Computational Ophthalmology and Biomedical Informatics
计算眼科和生物医学信息学
- 批准号:
10709404 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Collaborative Research: DMS/NIGMS 2: Novel machine-learning framework for AFMscanner in DNA-protein interaction detection
合作研究:DMS/NIGMS 2:用于 DNA-蛋白质相互作用检测的 AFM 扫描仪的新型机器学习框架
- 批准号:
10797460 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别: