Architectural design of active adhesives

活性粘合剂的结构设计

基本信息

  • 批准号:
    2403716
  • 负责人:
  • 金额:
    $ 49.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-05-01 至 2027-04-30
  • 项目状态:
    未结题

项目摘要

PART 1: NON-TECHNICAL SUMMARYAdhesives are ubiquitous materials not only in our daily lives but also for advanced and specialized applications such as wearable electronics, biomedical adhesives, and soft robotics. Current approaches to meet such a diverse scope of functions rely on exploratively blending assorted polymers with large quantities of tackifiers, plasticizers and other additives as needed. This mixing-based approach toward property control is ineffective and imprecise. Furthermore, loose additives are prone to leaching and migration, which leads to property variation over time along with inevitable surface contamination, thus prohibiting their use in sensitive applications such as art restoration, biomedical devices, and microelectronics. The proposed adhesion-by-architecture platform will empower the design of additive-free adhesives with tailored property combinations that can be switched on demand. The platform is based on brush-like polymer networks with dynamic molecular linkers, which provide various pathways for molecular-scaffold reconfiguration without losing material integrity. The abundance of structural parameters in molecular brush networks allows for the programmable variation of distinct physical characteristics independent of chemical composition and one another. Developing structurally programmable adhesives with actively modulated performance will offer a breakthrough in soft matter engineering, yielding active adhesives with exceptional property combinations and switching on-demand capability. The design of advanced materials will provide ample opportunities for interdisciplinary training of graduate students with diverse backgrounds through integration of precision chemistry, soft-matter physics, and emerging technologies.PART 2: TECHNICAL SUMMARYAdhesive performance results from an interplay of bulk and interfacial deformation mechanisms, both viscoelastic in nature. Understanding how molecular brush architecture controls this interplay represents the intellectual focus of this proposal. The proposed research will address the following fundamental problems. The first is the hierarchical relationship between adhesion and molecular network architecture, spanning different length and time scales. Understanding how an individual element of the brush structure contributes to the viscoelastic response is a crucial milestone towards programmable control of the performance of pressure-sensitive adhesives (PSAs). The second is the inherent reliance of adhesion on chemical composition and the interdependence of distinct adhesive characteristics such as tack, stretch, and work of adhesion. The design-by-architecture approach will allow breaking these conventional rules to allow for the variation of physical characteristics independent of chemistry and one another. The third is the current inability to switch the adhesion strength of pressure-sensitive adhesive materials on demand without perturbing the integrity and shape of a device. This challenge will be addressed by strategically incorporating dormant functionalities that can be activated by an external stimulus to trigger internal rearrangement of the network topology..This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
第 1 部分:非技术摘要粘合剂不仅在我们的日常生活中无处不在,而且还用于先进和专业的应用,例如可穿戴电子产品、生物医学粘合剂和软机器人。目前满足如此多样化功能的方法依赖于探索性地将各种聚合物与大量增粘剂、增塑剂和其他需要的添加剂混合。这种基于混合的属性控制方法无效且不精确。此外,松散的添加剂容易浸出和迁移,这会导致性能随时间变化以及不可避免的表面污染,从而禁止它们在艺术品修复、生物医学设备和微电子等敏感应用中使用。所提出的粘合结构平台将支持无添加剂粘合剂的设计,并具有可按需切换的定制属性组合。该平台基于带有动态分子连接体的刷状聚合物网络,为分子支架重新配置提供了多种途径,而不会损失材料的完整性。分子刷网络中丰富的结构参数允许独立于化学成分和彼此之间的不同物理特性的可编程变化。开发具有主动调节性能的结构可编程粘合剂将为软物质工程带来突破,产生具有卓越性能组合和按需切换能力的活性粘合剂。通过精密化学、软物质物理和新兴技术的整合,先进材料的设计将为具有不同背景的研究生的跨学科培训提供充足的机会。第 2 部分:技术摘要粘合剂性能是由体相和界面变形机制相互作用产生的,本质上都是粘弹性的。了解分子刷结构如何控制这种相互作用代表了该提案的智力焦点。拟议的研究将解决以下基本问题。第一个是粘附和分子网络结构之间的层次关系,跨越不同的长度和时间尺度。了解刷子结构的单个元件如何影响粘弹性响应是压敏粘合剂 (PSA) 性能可编程控制的一个重要里程碑。第二个是粘合力对化学成分的固有依赖性以及不同粘合剂特性(例如粘性、拉伸和粘合功)的相互依赖性。按架构设计的方法将打破这些传统规则,允许物理特性的变化独立于化学和彼此之间。第三个问题是目前无法在不影响设备完整性和形状的情况下按需切换压敏粘合剂材料的粘合强度。这一挑战将通过战略性地整合休眠功能来解决,这些功能可以通过外部刺激激活,从而触发网络拓扑的内部重新排列。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优势和更广泛的评估进行评估,被认为值得支持。影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sergei Sheiko其他文献

RAFT step-growth polymerizationviathe Z-group approach and deconstruction by RAFT interchange
  • DOI:
    10.1039/d3sc06736j
  • 发表时间:
    2024-02
  • 期刊:
  • 影响因子:
    8.4
  • 作者:
    Jiajia Li;Joji Tanaka;Qing Li;Claire Jing Jing Wang;Sergei Sheiko;Samantha Marie Clouthier;Jian Zhu;Wei You
  • 通讯作者:
    Wei You

Sergei Sheiko的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sergei Sheiko', 18)}}的其他基金

Collaborative Research: DMREF:Programmable Design, Synthesis, and Forensics of Soft Materials
合作研究:DMREF:软材料的可编程设计、合成和取证
  • 批准号:
    2324167
  • 财政年份:
    2023
  • 资助金额:
    $ 49.5万
  • 项目类别:
    Standard Grant
Macromolecular-bottlebrush polymeric gels with tissue-mimetic swelling and mechanical properties
具有模拟组织膨胀和机械性能的高分子瓶刷聚合物凝胶
  • 批准号:
    2004048
  • 财政年份:
    2020
  • 资助金额:
    $ 49.5万
  • 项目类别:
    Continuing Grant
DMREF: Collaborative Research: Strain Adaptive Materials
DMREF:合作研究:应变自适应材料
  • 批准号:
    1921835
  • 财政年份:
    2019
  • 资助金额:
    $ 49.5万
  • 项目类别:
    Standard Grant
Functional Elastomers Based on Bottlebrush-Shaped Macromolecules
基于刷子状高分子的功能弹性体
  • 批准号:
    1407645
  • 财政年份:
    2014
  • 资助金额:
    $ 49.5万
  • 项目类别:
    Continuing Grant
DMREF/Collaborative Research: Acoustically Transformative Materials
DMREF/合作研究:声学变革材料
  • 批准号:
    1436201
  • 财政年份:
    2014
  • 资助金额:
    $ 49.5万
  • 项目类别:
    Standard Grant
MIRT: Stressed Polymers - Exploiting Tension in Soft Matter
MIRT:应力聚合物 - 利用软物质中的张力
  • 批准号:
    1122483
  • 财政年份:
    2011
  • 资助金额:
    $ 49.5万
  • 项目类别:
    Continuing Grant
New Strategies for Patterning: Implications for Branched Nacromolecules
图案化的新策略:对支化高分子的影响
  • 批准号:
    0906985
  • 财政年份:
    2009
  • 资助金额:
    $ 49.5万
  • 项目类别:
    Standard Grant
NIRT: Engineered Molecular Fluidics
NIRT:工程分子流体学
  • 批准号:
    0609087
  • 财政年份:
    2006
  • 资助金额:
    $ 49.5万
  • 项目类别:
    Standard Grant
Macromolecular Spreading
高分子铺展
  • 批准号:
    0606086
  • 财政年份:
    2006
  • 资助金额:
    $ 49.5万
  • 项目类别:
    Continuing Grant
Molecular Visualization: Spreading Kinematics and Dynamics
分子可视化:传播运动学和动力学
  • 批准号:
    0306787
  • 财政年份:
    2003
  • 资助金额:
    $ 49.5万
  • 项目类别:
    Continuing Grant

相似国自然基金

平台经济中的市场失灵与机制设计研究
  • 批准号:
    72373127
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
铅芯橡胶支座隔震体系热力耦合机理及设计方法研究
  • 批准号:
    52308527
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
负泊松比复合钢板剪力墙地震–爆炸动力灾变性能及协同设计理论研究
  • 批准号:
    52378179
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
极端气候条件下多能源互补系统设计优化的建模方法研究
  • 批准号:
    52306027
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
具有高激子利用率的纯有机快闪烁体材料设计及应用
  • 批准号:
    62305276
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
  • 批准号:
    2334969
  • 财政年份:
    2024
  • 资助金额:
    $ 49.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
  • 批准号:
    2334970
  • 财政年份:
    2024
  • 资助金额:
    $ 49.5万
  • 项目类别:
    Standard Grant
Small Molecule Degraders of Tryptophan 2,3-Dioxygenase Enzyme (TDO) as Novel Treatments for Neurodegenerative Disease
色氨酸 2,3-双加氧酶 (TDO) 的小分子降解剂作为神经退行性疾病的新疗法
  • 批准号:
    10752555
  • 财政年份:
    2024
  • 资助金额:
    $ 49.5万
  • 项目类别:
GEMSSTAR PERSPIRE-COPD
GEMSSTAR 出汗-慢性阻塞性肺病
  • 批准号:
    10724784
  • 财政年份:
    2023
  • 资助金额:
    $ 49.5万
  • 项目类别:
The Application of a Theoretical Framework to Assess the Acceptability of a Health-Related Social Needs Screening Tool Among Black Patients In New York City
应用理论框架评估纽约市黑人患者对健康相关社会需求筛查工具的接受程度
  • 批准号:
    10826205
  • 财政年份:
    2023
  • 资助金额:
    $ 49.5万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了