Conference: Geometry of Measures and Free Boundaries
会议:测量几何和自由边界
基本信息
- 批准号:2403698
- 负责人:
- 金额:$ 5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-02-15 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This award provides support for an international research conference on the geometry of measures and free boundaries, to take place July 22–26, 2024 at the University of Washington, Seattle. The conference lies at the intersection of calculus of variations, geometric measure theory, harmonic analysis, and partial differential equations. The event will include pre-conference introductory minicourses for PhD students, to be held July 20–21, 2024. Funding from this award will support travel expenses for non-local speakers and other participants in the conference and the minicourses, with priority for participant support given to PhD students, postdocs, and researchers without access to other sources of funding.The subject of Geometric Measure Theory encompasses a range of analytical tools used to describe the size and structure of sets with a geometric flavor, and the theory of Free Boundary Problems addresses the challenge of characterizing unknown interfaces that adhere to specified constraints, often described by a partial differential equation. Free Boundary Problems arise in several disciplines outside of pure mathematics, including physics, finance, and biology. Contemporary geometric measure theory in metric spaces is parallel to applied research on the problem of identifying manifold structure in large data sets. The two main topics of the conference are linked through a spectrum of notions of lower-order and higher-order regularity of sets. By convening current practitioners in geometric measure theory, free boundary problems, and related areas of geometric and harmonic analysis to share their perspectives and report on the latest advances, the conference seeks to strengthen the connections between the subjects, to shed light on shared principles, and to facilitate novel solutions to longstanding problems. The conference website is https://sites.google.com/view/gmfbseattle2024/This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bobby Wilson其他文献
On a bilinear Strichartz estimate on irrational tori and some application
无理环面的双线性 Strichartz 估计及其应用
- DOI:
10.1007/bf00202911 - 发表时间:
2016-12-26 - 期刊:
- 影响因子:0
- 作者:
Chenjie Fan;G. Staffilani;Hong Wang;Bobby Wilson - 通讯作者:
Bobby Wilson
Energy transfer for solutions to the nonlinear Schr"odinger equation on irrational tori
无理环上非线性薛定格方程解的能量传递
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Alexander Hrabski;Yulin Pan;G. Staffilani;Bobby Wilson - 通讯作者:
Bobby Wilson
Stability of the Cubic Nonlinear Schrodinger Equation on Irrational Tori.
无理环面上三次非线性薛定谔方程的稳定性。
- DOI:
10.1007/s00425-013-1859-3 - 发表时间:
2018-06-05 - 期刊:
- 影响因子:0
- 作者:
G. Staffilani;Bobby Wilson - 通讯作者:
Bobby Wilson
Distance sets bounds for polyhedral norms via effective dimension
距离通过有效尺寸设置多面体范数的界限
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Iqra Altaf;Ryan E. G. Bushling;Bobby Wilson - 通讯作者:
Bobby Wilson
ENERGY TRANSFER FOR SOLUTIONS TO THE NONLINEAR SCHRÖDINGER EQUATION ON IRRATIONAL TORI
无理环面非线性薛定谔方程解的能量传递
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Alexander Hrabski;Yulin Pan;G. Staffilani;Bobby Wilson - 通讯作者:
Bobby Wilson
Bobby Wilson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bobby Wilson', 18)}}的其他基金
CAREER: Regularity Theory of Measures and Dispersive Partial Differential Equations
职业:测度正则性理论和色散偏微分方程
- 批准号:
2142064 - 财政年份:2022
- 资助金额:
$ 5万 - 项目类别:
Continuing Grant
Harmonic Analysis, Structure Theory of Measures, and Properties of Hamiltonian Dynamical Systems
调和分析、结构测度理论以及哈密顿动力系统的性质
- 批准号:
1856124 - 财政年份:2019
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Houston - Louis Stokes STEM Pathways and Research Alliance
休斯顿 - 路易斯斯托克斯 STEM 途径和研究联盟
- 批准号:
1911310 - 财政年份:2019
- 资助金额:
$ 5万 - 项目类别:
Continuing Grant
Minority Undergraduate/Graduate Student Technical Presentation-Experience at the 2014 National Organization for the Professional Advancement of Black Chemists & Chemical Engine
少数族裔本科生/研究生技术演讲 - 2014 年全国黑人化学家职业发展组织的经历
- 批准号:
1449993 - 财政年份:2014
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Houston-Louis Stokes Alliance for Minority Participation:Senior Alliance
休斯顿-路易斯斯托克斯少数族裔参与联盟:高级联盟
- 批准号:
1407736 - 财政年份:2014
- 资助金额:
$ 5万 - 项目类别:
Continuing Grant
Minority Undergraduate/Graduate Student Technical Presentation Experience at the 2013 NOBCChE Annual Technical Conference
2013年NOBCChE年度技术会议少数族裔本科生/研究生技术演讲经历
- 批准号:
1355313 - 财政年份:2013
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Science and Technology Enhancement Program (STEP)
科学技术增强计划(STEP)
- 批准号:
0624866 - 财政年份:2006
- 资助金额:
$ 5万 - 项目类别:
Continuing Grant
Chemical and Biological Assessment of Endocrine Disruptors in Waterways of Southeast Texas
德克萨斯州东南部水道内分泌干扰物的化学和生物评估
- 批准号:
0401587 - 财政年份:2004
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Investigation of Coal, Coal Derived Prod. and Coal Catalysts
煤炭、煤炭衍生产品调查
- 批准号:
8704062 - 财政年份:1987
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
The Synthesis and Characterization of Some Poly(Pyrazol-1- Yl)borate Complexes of Zirconium (Iv) and of Niobium (Iv)
锆(Iv)和铌(Iv)的一些聚(吡唑-1-基)硼酸盐配合物的合成和表征
- 批准号:
7704572 - 财政年份:1977
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
相似国自然基金
奇异黎曼叶状结构的微分几何学研究
- 批准号:12371048
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
基于代数几何学的统计学习理论研究
- 批准号:12171382
- 批准年份:2021
- 资助金额:50 万元
- 项目类别:面上项目
非欧几何学的若干历史问题研究
- 批准号:12161086
- 批准年份:2021
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于拓扑几何学的致密油藏跨尺度润湿机理研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
中天山乌拉斯台韧性剪切带几何学与运动学构造解析
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
相似海外基金
Mechanism of epidermal coordination during development and regeneration in zebrafish
斑马鱼发育和再生过程中表皮协调机制
- 批准号:
10643060 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Patient specific computational modeling of fluid-structure interactions of cerebrospinal fluid for biomarkers in Alzheimer's disease
阿尔茨海默病生物标志物脑脊液流固相互作用的患者特定计算模型
- 批准号:
10644281 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Microchip electrophoresis as basis for fully integrated, fully automated, low-cost radiopharmaceutical QC platform
微芯片电泳作为完全集成、全自动、低成本放射性药物 QC 平台的基础
- 批准号:
10697506 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Shape-based personalized AT(N) imaging markers of Alzheimer's disease
基于形状的个性化阿尔茨海默病 AT(N) 成像标记
- 批准号:
10667903 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Emergent Technology for Studying the Structure/Function Relationship of Enzymes Using Electron Paramagnetic Resonance
利用电子顺磁共振研究酶结构/功能关系的新兴技术
- 批准号:
10630488 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别: