Number Theory, Potential Theory, and Convex Optimization
数论、势论和凸优化
基本信息
- 批准号:2401242
- 负责人:
- 金额:$ 26.37万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-07-01 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The research and broader impacts of this award will contribute to current developments in number theory, computer science, and mathematical physics. Computer scientists and mathematicians are interested in the classification and optimal approximation of integral polynomials with real roots. The PI and his Ph.D. student (Bryce Orloski) will prove new (optimal) results and introduce new strategies in this direction. Their methods and algorithms will have applications in mathematical physics (ground states of interacting particle systems) and information theory (error-correcting codes). The PI is passionate and invested in teaching Mathematics to underrepresented minorities. He will use his funding to support his graduate students. The PI will organize a workshop on number theory and convex optimization at Penn State University in the third summer of the grant. The workshop will introduce around 20 advanced graduate students and beginning postdocs to an active area of research and enable them to start their work in this area, particularly in collaboration with each other or senior mathematicians. On a more technical level, understanding the distribution of roots of integral polynomials with real roots sheds light on the distribution of the roots of the zeta function of abelian varieties over finite fields, the distribution of eigenvalues of the adjacency matrices of graphs and the distribution of the eigenvalues of the symmetric integral matrices. The PI and his Ph.D. student (Bryce Orloski) will classify the possible asymptotic distributions of the conjugates of algebraic integers over a given number field. The main goal is to identify the leading exponent of the asymptotic number of algebraic integers with some adelic constraints with the generalized transfinite diameter defined by David Cantor and Robert Rumely. Moreover, they propose a new method since the work of Smyth in 1984 and derive new bounds for the Schur-Siegel-Smyth trace problem by formulating a convex optimization problem in potential theory. They will prove the existence of a unique analytic solution to this optimization problem as the solution to some linear and integral equations. They will develop and implement an efficient algorithm for approximating the optimal solution. Furthermore, physicists have used the linear programming (conformal bootstrap) method to constrain the spectrum of two-dimensional conformal field theories. The PI's project on the optimality of the hexagonal lattice and the extremal values of the first nontrivial eigenvalues of the Laplacian operator will prove new results for these problems and introduce new methods in this direction with applications in Mathematical Physics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项的研究和更广泛的影响将有助于数论、计算机科学和数学物理学的当前发展。计算机科学家和数学家对实数根积分多项式的分类和最优逼近感兴趣。 PI 和他的博士学位。学生(Bryce Orloski)将证明新的(最佳)结果并在这个方向上引入新的策略。他们的方法和算法将在数学物理(相互作用粒子系统的基态)和信息论(纠错码)中得到应用。 PI 热衷于向代表性不足的少数群体教授数学。他将用他的资金来支持他的研究生。 PI 将在资助的第三个夏天在宾夕法尼亚州立大学组织一次关于数论和凸优化的研讨会。该研讨会将向大约 20 名高级研究生和博士后介绍一个活跃的研究领域,并使他们能够开始在该领域的工作,特别是与彼此或高级数学家合作。 在更技术的层面上,理解具有实根的积分多项式的根的分布有助于了解有限域上阿贝尔簇的 zeta 函数的根的分布、图的邻接矩阵的特征值的分布以及对称积分矩阵的特征值。 PI 和他的博士学位。学生(Bryce Orloski)将对给定数域上代数整数共轭的可能渐近分布进行分类。主要目标是通过 David Cantor 和 Robert Rumely 定义的广义超限直径确定代数整数渐近数的首指数,并具有一些 adelic 约束。此外,自 1984 年 Smyth 的工作以来,他们提出了一种新方法,并通过在势论中制定凸优化问题来导出 Schur-Siegel-Smyth 迹问题的新界限。他们将证明该优化问题存在唯一解析解,作为某些线性和积分方程的解。他们将开发并实施一种有效的算法来逼近最佳解决方案。此外,物理学家还使用线性规划(共形自举)方法来约束二维共形场论的谱。 PI 关于六方晶格的最优性和拉普拉斯算子第一非平凡特征值的极值的项目将证明这些问题的新结果,并在数学物理中的应用中引入这个方向的新方法。该奖项反映了 NSF 的法定使命和通过使用基金会的智力价值和更广泛的影响审查标准进行评估,该项目被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Naser Talebizadeh Sardari其他文献
Naser Talebizadeh Sardari的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Naser Talebizadeh Sardari', 18)}}的其他基金
Applications of Number Theory to the Quantum Gates Model
数论在量子门模型中的应用
- 批准号:
2015305 - 财政年份:2019
- 资助金额:
$ 26.37万 - 项目类别:
Standard Grant
Applications of Number Theory to the Quantum Gates Model
数论在量子门模型中的应用
- 批准号:
2015305 - 财政年份:2019
- 资助金额:
$ 26.37万 - 项目类别:
Standard Grant
Applications of Number Theory to the Quantum Gates Model
数论在量子门模型中的应用
- 批准号:
1902185 - 财政年份:2019
- 资助金额:
$ 26.37万 - 项目类别:
Standard Grant
相似国自然基金
基于潜在结果框架和高维脑影像数据的因果中介分析理论和方法学研究
- 批准号:82304241
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
潜在参数异质性和横截面相关性的非平稳面板模型:理论和应用
- 批准号:72003127
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
潜在气候参照量年太阳辐射的理论推导与分析
- 批准号:42005045
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
基于潜在变量模型的稳健贝叶斯统计推断理论及应用
- 批准号:72073121
- 批准年份:2020
- 资助金额:48 万元
- 项目类别:面上项目
潜在特质分布未知的多维项目反应理论的贝叶斯推断
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
相似海外基金
Exploring Large-Scale Geometry via Local and Nonlocal Potential Theory
通过局部和非局部势理论探索大尺度几何
- 批准号:
2348748 - 财政年份:2024
- 资助金额:
$ 26.37万 - 项目类别:
Standard Grant
CAREER: Tropical to temperate forest dynamics and their potential influences on plant performance strategies, a theory-data fusion approach
职业:热带到温带森林动态及其对植物性能策略的潜在影响,一种理论数据融合方法
- 批准号:
2239483 - 财政年份:2023
- 资助金额:
$ 26.37万 - 项目类别:
Continuing Grant
Studies on potential theory for revealing nonlinear problems
揭示非线性问题的势论研究
- 批准号:
23K03149 - 财政年份:2023
- 资助金额:
$ 26.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Metalloenzyme binding affinity prediction with VM2
使用 VM2 预测金属酶结合亲和力
- 批准号:
10697593 - 财政年份:2023
- 资助金额:
$ 26.37万 - 项目类别:
Metalloenzyme binding affinity prediction with VM2
使用 VM2 预测金属酶结合亲和力
- 批准号:
10697593 - 财政年份:2023
- 资助金额:
$ 26.37万 - 项目类别: