Conference: Singularities in Ann Arbor

会议:安娜堡的奇点

基本信息

项目摘要

The conference "Singularities in Ann Arbor", scheduled for May 13-17, 2024, at the University of Michigan, Ann Arbor, will explore recent progress in the study of singularities in algebraic geometry. Algebraic geometry, in simple terms, concerns itself with studying geometric objects defined by polynomial equations. This conference will focus on several recent advances concerning singularities: these are points where the geometric objects behave in unexpected ways (such as the bumps or dents on a normally flat surface). Understanding these singularities not only satisfies intellectual curiosity but also plays a crucial role in classifying and comprehending global complex geometric structures. More details about the conference, as well as the list of confirmed lecturers, are available on the conference website, at https://sites.google.com/view/singularitiesinaa.The conference will feature four lecture series presented by leading experts and rising stars in the field, covering recent advancement related to singularities. These lectures will introduce fresh perspectives and tools, including Hodge Theory, D-modules, and symplectic topology, to address challenging questions in algebraic geometry. The conference aims to make these complex ideas accessible to a younger audience, fostering engagement and understanding among participants. Additionally, the conference will provide a platform for young researchers to showcase their work through a poster session, encouraging collaboration and discussion among participants. This award will provide travel and lodging support for about 35 early-career conference participants.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mircea Mustata其他文献

A boundedness conjecture for minimal log discrepancies on a fixed germ
固定细菌上最小对数差异的有界猜想
  • DOI:
    10.1090/conm/712/14351
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mircea Mustata; Yusuke Nakamura
  • 通讯作者:
    Yusuke Nakamura
Test ideals vs. multiplier ideals
测试理想值与乘数理想值
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mircea Mustata; Ken
  • 通讯作者:
    Ken
A boundedness conjecture for minimal log discrepancies on a fixed germ
固定细菌上最小对数差异的有界猜想
  • DOI:
    10.1090/conm/712/14351
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mircea Mustata; Yusuke Nakamura
  • 通讯作者:
    Yusuke Nakamura
A boundedness conjecture for minimal log discrepancies on a fixed germ
固定细菌上最小对数差异的有界猜想
  • DOI:
    10.1090/conm/712/14351
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mircea Mustata; Yusuke Nakamura
  • 通讯作者:
    Yusuke Nakamura
Test ideals vs. multiplier ideals
测试理想值与乘数理想值
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mircea Mustata; Ken
  • 通讯作者:
    Ken

Mircea Mustata的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mircea Mustata', 18)}}的其他基金

D-modules and invariants of singularities
D 模和奇点不变量
  • 批准号:
    2301463
  • 财政年份:
    2023
  • 资助金额:
    $ 3.38万
  • 项目类别:
    Standard Grant
Hodge Filtration on Local Cohomology and Minimal Exponents
局部上同调和最小指数的 Hodge 过滤
  • 批准号:
    2001132
  • 财政年份:
    2020
  • 资助金额:
    $ 3.38万
  • 项目类别:
    Continuing Grant
Facets of Algebraic Geometry
代数几何的各个方面
  • 批准号:
    1904591
  • 财政年份:
    2019
  • 资助金额:
    $ 3.38万
  • 项目类别:
    Standard Grant
Hodge-Theoretic Generalizations of Multiplier Ideals
乘数理想的霍奇理论推广
  • 批准号:
    1701622
  • 财政年份:
    2017
  • 资助金额:
    $ 3.38万
  • 项目类别:
    Continuing Grant
A view towards algebraic geometry
对代数几何的看法
  • 批准号:
    1702114
  • 财政年份:
    2017
  • 资助金额:
    $ 3.38万
  • 项目类别:
    Standard Grant
Questions on Singularities and Adjoint Linear Systems
关于奇点和伴随线性系统的问题
  • 批准号:
    1401227
  • 财政年份:
    2014
  • 资助金额:
    $ 3.38万
  • 项目类别:
    Standard Grant
Recent Advances in Algebraic Geometry
代数几何的最新进展
  • 批准号:
    1262798
  • 财政年份:
    2013
  • 资助金额:
    $ 3.38万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Birational Geometry and Singularities in Zero and Positive Characteristic
FRG:协作研究:双有理几何和零特征和正特征中的奇点
  • 批准号:
    1265256
  • 财政年份:
    2013
  • 资助金额:
    $ 3.38万
  • 项目类别:
    Continuing Grant
Invariants of Singularities in Zero and Positive Characteristic
零特征和正特征中奇点的不变量
  • 批准号:
    1068190
  • 财政年份:
    2011
  • 资助金额:
    $ 3.38万
  • 项目类别:
    Continuing Grant
Frobenius Splitting in Algebraic Geometry, Commutative Algebra, and Representation Theory
代数几何、交换代数和表示论中的弗罗贝尼乌斯分裂
  • 批准号:
    0968646
  • 财政年份:
    2010
  • 资助金额:
    $ 3.38万
  • 项目类别:
    Standard Grant

相似国自然基金

生物膜的结构与动力学性质:一类介面模型中的几何结构与奇点
  • 批准号:
    12301262
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
纯导出范畴和纯奇点范畴
  • 批准号:
    12361008
  • 批准年份:
    2023
  • 资助金额:
    27 万元
  • 项目类别:
    地区科学基金项目
多能带动量空间融合光子晶体平板偏振奇点的研究
  • 批准号:
    12374362
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
部分相干光场相干奇点调控、传输及其在信息传递中应用研究
  • 批准号:
    12374311
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
Keller猜想与奇点Hochschild(上)同调
  • 批准号:
    12301055
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Topological study of real singularities and manifolds using fibring structures
使用纤维结构对实奇点和流形进行拓扑研究
  • 批准号:
    16K05140
  • 财政年份:
    2016
  • 资助金额:
    $ 3.38万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on global properties of algebraic singularities
代数奇点的全局性质研究
  • 批准号:
    26287011
  • 财政年份:
    2014
  • 资助金额:
    $ 3.38万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Application of orbifold signature to singularities and singular fibers
Orbifold 签名在奇点和奇异纤维中的应用
  • 批准号:
    24540048
  • 财政年份:
    2012
  • 资助金额:
    $ 3.38万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Homotopy theory on singularities of differentiable maps and K-invariant spaces of the jet spaces
可微映射奇点与射流空间K不变空间的同伦理论
  • 批准号:
    21540085
  • 财政年份:
    2009
  • 资助金额:
    $ 3.38万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study on the secondary obstruction classes of singularities
奇点二级阻塞类别研究
  • 批准号:
    21540101
  • 财政年份:
    2009
  • 资助金额:
    $ 3.38万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了