Conference: 2024 KUMUNU-ISU Conference on PDE, Dynamical Systems and Applications

会议:2024 年 KUMUNU-ISU 偏微分方程、动力系统和应用会议

基本信息

项目摘要

This award will provide support for participants, especially graduate students, junior researchers, women and mathematicians from underrepresented groups in mathematics and the sciences, to attend the KUMUNU-ISU Conference on PDE, Dynamical Systems, and Applications to be held at the University of Kansas on April 6-7, 2024. This is the 8th edition of an annual conference series co-organized by faculty from the University of Kansas (KU), the University of Missouri (MU), the University of Nebraska (NU) and, more recently, Iowa State University (ISU). Nearly all physical phenomena are governed by fundamental laws and design principles that directly relate rates of change of the various quantities involved to one another. This powerful underlying concept leads naturally to differential equations, which are widely used as models in mathematical physics and have applications to a wide range of fields including Bose-Einstein condensates, fluid dynamics, pattern formation, gas dynamics, and fiber optical communications. This conference will bring together researchers from the broader geographic region around Kansas, Missouri, Nebraska and Iowa to report new results and exchange ideas on differential equations and their applications. Building on the success of the prior seven conferences in this conference series, the conference will provide a venue for regional junior and senior researchers, as well as graduate students, to discuss recent advances and challenges in their respective fields. Additionally, early-career researchers will be given the opportunity to present their work and to gain insight into state-of-the-art results and associated techniques through interactions with senior experts in the field.Complex nonlinear systems abound in science and engineering, and their behavior is often modeled by systems of nonlinear partial differential equations (PDE). Any progress towards understanding the behavior of the solutions to PDE is of paramount importance for a variety of practical applications, including fluid flow, flame front propagation and fiber optical communications. Many PDE can be conveniently described as infinite-dimensional dynamical systems, allowing for the use of tools and methodologies from the theory of dynamical systems to make qualitative and quantitative predictions about the solutions of these systems. Objects like invariant manifolds have been a great aid in understanding the behavior of finite-dimensional dynamical systems, but identifying the connections between nonlinear PDE and dynamical systems is still a very active direction of current research. In the last few decades, collaborations between researchers in these fields, as well as with those working in their applications, have provided tremendous progress in our understanding of the dynamical behavior, stability, and robustness of coherent structures in such nonlinear PDE. The themes of this conference include (i) fluid dynamics, water waves and dispersive PDE, (ii) existence, dynamics, and stability of nonlinear waves in dissipative systems, and (iii) completely integrable systems and their applications. These themes are well represented by the regional experts as well as the invited plenary speakers. The conference website can be found at https://kumunu-isu-pde-ds2024.ku.edu/.This project is jointly funded by the Division of Mathematical Sciences (DMS) Applied Mathematics Program, and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项将为参与者,特别是来自数学和科学领域代表性不足群体的研究生、初级研究人员、女性和数学家提供支持,以参加将在堪萨斯大学举行的 KUMUNU-ISU 偏微分方程、动力系统和应用会议将于 2024 年 4 月 6 日至 7 日举行。这是由堪萨斯大学 (KU)、密苏里大学 (MU)、内布拉斯加大学 (NU) 和最近的爱荷华州立大学 (ISU)。 几乎所有物理现象都受基本定律和设计原理的支配,这些定律和设计原理直接将涉及的各种量的变化率相互关联。这一强大的基本概念自然而然地引出了微分方程,微分方程被广泛用作数学物理模型,并应用于广泛的领域,包括玻色-爱因斯坦凝聚、流体动力学、图案形成、气体动力学和光纤通信。这次会议将汇集来自堪萨斯州、密苏里州、内布拉斯加州和爱荷华州周围更广泛地理区域的研究人员,报告新成果并交流有关微分方程及其应用的想法。在此会议系列中前七次会议取得成功的基础上,本次会议将为地区初级和高级研究人员以及研究生提供一个场所,讨论各自领域的最新进展和挑战。此外,早期职业研究人员将有机会展示他们的工作,并通过与该领域的资深专家互动来深入了解最先进的成果和相关技术。复杂的非线性系统在科学和工程中比比皆是,它们的行为通常通过非线性偏微分方程 (PDE) 系统进行建模。理解偏微分方程解的行为的任何进展对于各种实际应用(包括流体流动、火焰前锋传播和光纤通信)都至关重要。许多偏微分方程可以方便地描述为无限维动力系统,允许使用动力系统理论中的工具和方法来对这些系统的解决方案进行定性和定量预测。像不变流形这样的对象对于理解有限维动力系统的行为有很大帮助,但识别非线性偏微分方程和动力系统之间的联系仍然是当前研究的一个非常活跃的方向。在过去的几十年中,这些领域的研究人员以及与其应用领域的研究人员之间的合作,在我们对此类非线性偏微分方程中相干结构的动力学行为、稳定性和鲁棒性的理解方面取得了巨大进展。 本次会议的主题包括(i)流体动力学、水波和色散偏微分方程,(ii)耗散系统中非线性波的存在、动力学和稳定性,以及(iii)完全可积系统及其应用。区域专家和受邀的全体会议发言人很好地体现了这些主题。会议网站https://kumunu-isu-pde-ds2024.ku.edu/。该项目由数学科学部(DMS)应用数学项目和促进竞争研究既定项目共同资助(EPSCoR)。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mathew Johnson其他文献

Minimum wages and the multiple functions of wages
最低工资和工资的多重功能
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Rubery;Mathew Johnson;D. Grimshaw
  • 通讯作者:
    D. Grimshaw
Chemical Composition of Commercial Cannabis.
商业大麻的化学成分。
  • DOI:
    10.1021/acs.jafc.3c06616
  • 发表时间:
    2024-01-05
  • 期刊:
  • 影响因子:
    6.1
  • 作者:
    D. Wishart;Mickel Hiebert;Gozal Inchehborouni;Xuan Cao;An Chi Guo;Marcia A LeVatte;Claudia Torres;Vasuk Gautam;Mathew Johnson;Jaanus Liig;Fei Wang;Shirin Zahrei;S. Bhumireddy;Yilin Wang;Jiamin Zheng;R. M;al;al;Jason R B Dyck
  • 通讯作者:
    Jason R B Dyck
Examination of gender differences using the multiple groups DINA model
使用多组 DINA 模型检查性别差异
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mathew Johnson;Young;R. Sachdeva;Jianzhou Zhang;M. Waldman;Jung Yeon Park
  • 通讯作者:
    Jung Yeon Park
Campus Classification, Identity, and Change: The Elective Carnegie Classification for Community Engagement
校园分类、身份和变化:社区参与的选修卡内基分类
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    John A. Saltmarsh;Mathew Johnson
  • 通讯作者:
    Mathew Johnson
Defining Planktonic Protist Functional Groups on Mechanisms for Energy and Nutrient Acquisition: Incorporation of Diverse Mixotrophic Strategies.
定义浮游原生生物功能群的能量和营养获取机制:多种混合营养策略的结合。
  • DOI:
    10.1016/j.protis.2016.01.003
  • 发表时间:
    2024-09-14
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Aditee Mitra;K. Flynn;U. Tillmann;J. Raven;D. Caron;D. Stoecker;F. Not;P. J. Hansen;G. Hallegraeff;R. S;ers;ers;Susanne Wilken;G. McManus;Mathew Johnson;P. Pitta;Selina Våge;Terje Berge;A. Calbet;F. Thingstad;H. Jeong;J. Burkholder;P. Glibert;E. Granéli;Veronica M. Lundgren
  • 通讯作者:
    Veronica M. Lundgren

Mathew Johnson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mathew Johnson', 18)}}的其他基金

Stochastic Calculus of Variations and Limit Theorems
随机变分和极限定理
  • 批准号:
    2054735
  • 财政年份:
    2021
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Standard Grant
Modulations of Periodic Waves in Applied Mathematics
应用数学中的周期波调制
  • 批准号:
    2108749
  • 财政年份:
    2021
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Standard Grant
Decent Work and the city
体面劳动与城市
  • 批准号:
    MR/T019433/1
  • 财政年份:
    2020
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Fellowship
4th Annual KUMUNU Conference in Partial Differential Equations, Dynamical Systems and Applications
第四届偏微分方程、动力系统和应用 KUMUNU 年度会议
  • 批准号:
    1753332
  • 财政年份:
    2018
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Standard Grant
Existence, Stability, and Dynamics of Nonlinear Waves
非线性波的存在性、稳定性和动力学
  • 批准号:
    1614785
  • 财政年份:
    2016
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Standard Grant
Existence, Stability, and Dynamics of Nonlinear Waves
非线性波的存在性、稳定性和动力学
  • 批准号:
    1614785
  • 财政年份:
    2016
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Standard Grant
Stability of Nonlinear Waves in Dissipative and Dispersive PDE
耗散和色散偏微分方程中非线性波的稳定性
  • 批准号:
    1211183
  • 财政年份:
    2012
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Standard Grant
PostDoctoral Research Fellowship
博士后研究奖学金
  • 批准号:
    0902192
  • 财政年份:
    2009
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Fellowship Award

相似国自然基金

ZrO2-GNPs双相协同增强2024Al激光增材制造性能调控与强韧化机制研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
锂在2024铝合金中的微合金化作用研究
  • 批准号:
    51801157
  • 批准年份:
    2018
  • 资助金额:
    28.0 万元
  • 项目类别:
    青年科学基金项目
往复墩-挤Al2O3/2024铝基复合材料的变形机制、组织结构演变规律及强韧化机理研究
  • 批准号:
    51271076
  • 批准年份:
    2012
  • 资助金额:
    80.0 万元
  • 项目类别:
    面上项目
提高硼酸铝晶须增强2024铝复合材料高温热稳定性和耐磨性的界面设计及性能研究
  • 批准号:
    51201052
  • 批准年份:
    2012
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
超高应变对2024铝合金组织结构的影响
  • 批准号:
    59471015
  • 批准年份:
    1994
  • 资助金额:
    7.0 万元
  • 项目类别:
    面上项目

相似海外基金

CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Studentship
Conference: FASEB Yeast Chromosome and Cell Cycle Conference 2024
会议:2024 年 FASEB 酵母染色体和细胞周期会议
  • 批准号:
    2403471
  • 财政年份:
    2024
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Standard Grant
Travel Support: A Short Course on The Polymer Physics of Additive Manufacturing; 2024 American Physical Society (APS) Meeting; Minneapolis, Minnesota; 2-3 March 2024
差旅支持:增材制造聚合物物理短期课程;
  • 批准号:
    2403712
  • 财政年份:
    2024
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Standard Grant
Conference: Geometric and Asymptotic Group Theory with Applications 2024
会议:几何和渐近群理论及其应用 2024
  • 批准号:
    2403833
  • 财政年份:
    2024
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Standard Grant
Conference: Artificial Intelligence Summer School for Computer Science and Operations Research Education; College Park, Maryland; 19-24 May 2024
会议:计算机科学和运筹学教育人工智能暑期学校;
  • 批准号:
    2408982
  • 财政年份:
    2024
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了