Stochastic Calculus of Variations and Limit Theorems

随机变分和极限定理

基本信息

项目摘要

The goal of this project is to investigate a variety of problems in stochastic analysis, which is a part of probability theory that studies dynamical systems under the action of random impulses. A central objective is the analysis of stochastic partial differential equations, such as the heat and wave equations, perturbed by random noises. These equations provide mathematical models in a wide range of areas, such as growth models for interfaces, turbulence in fluid dynamics and polymer models. The proposed research will focus on the ergodicity and random fluctuations of spatial averages, which are related to observed characteristics in particular physical models. A second objective of the project is to broaden the range of applications of the stochastic calculus of variations, also called Malliavin calculus. The Malliavin calculus is a mathematical theory that extends the classical calculus of variations from functions to stochastic processes. It has proven to be a powerful tool in deriving rates of convergence in central limit theorems, which are of great relevance in statistical inference. Particular emphasis will be put in the analysis of random processes with long memory which are useful to handle data coming from finance, telecommunications and other areas. The project provides research training opportunities for graduate students. A first working block of the project consists in establishing quantitative central limit theorems for spatial averages of a wide class of stochastic partial differential equations driven by a Gaussian noise which has homogeneous covariance. Challenging problems are the case of the three dimensional wave equation driven by a noise which is white in time and it has a Riesz covariance in space, and also the case of noises which are rougher that the white noise. Establishing the rate for probability densities using techniques of Malliavin calculus is a central goal of the project. A second working block deals with deriving the asymptotic behavior of functionals of the fractional Brownian motion related to local times. An innovative methodology based on the Clark-Ocone formula will be developed. In a third working block we plan to address several open problems in the applications of the stochastic calculus of variation in limit problems including local asymptotic expansions of densities and rates of convergence for Euler approximations in stochastic Volterra equations.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目的目标是研究随机分析中的各种问题,随机分析是研究随机脉冲作用下动力系统的概率论的一部分。中心目标是分析受随机噪声扰动的随机偏微分方程,例如热方程和波动方程。这些方程提供了广泛领域的数学模型,例如界面的增长模型、流体动力学中的湍流和聚合物模型。拟议的研究将重点关注空间平均值的遍历性和随机波动,这与特定物理模型中观察到的特征有关。 该项目的第二个目标是扩大随机变分法(也称为 Malliavin 微积分)的应用范围。马利亚文微积分是一种数学理论,它将经典变分法从函数扩展到随机过程。事实证明,它是推导中心极限定理收敛速度的有力工具,这在统计推断中具有重要意义。将特别强调对具有长记忆力的随机过程的分析,这对于处理来自金融、电信和其他领域的数据非常有用。该项目为研究生提供研究培训机会。该项目的第一个工作块包括为由具有齐次协方差的高斯噪声驱动的一大类随机偏微分方程的空间平均值建立定量中心极限定理。具有挑战性的问题是由时间上为白噪声且空间上具有 Riesz 协方差的噪声驱动的三维波动方程的情况,以及比白噪声更粗糙的噪声的情况。使用 Malliavin 微积分技术建立概率密度率是该项目的中心目标。第二个工作块涉及导出与本地时间相关的分数布朗运动泛函的渐近行为。将开发一种基于克拉克-奥科恩公式的创新方法。在第三个工作块中,我们计划解决极限问题中随机变分计算应用中的几个未决问题,包括随机 Volterra 方程中欧拉近似的密度局部渐近展开和收敛率。该奖项反映了 NSF 的法定使命,并具有通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mathew Johnson其他文献

Minimum wages and the multiple functions of wages
最低工资和工资的多重功能
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Rubery;Mathew Johnson;D. Grimshaw
  • 通讯作者:
    D. Grimshaw
Chemical Composition of Commercial Cannabis.
商业大麻的化学成分。
  • DOI:
    10.1021/acs.jafc.3c06616
  • 发表时间:
    2024-01-05
  • 期刊:
  • 影响因子:
    6.1
  • 作者:
    D. Wishart;Mickel Hiebert;Gozal Inchehborouni;Xuan Cao;An Chi Guo;Marcia A LeVatte;Claudia Torres;Vasuk Gautam;Mathew Johnson;Jaanus Liig;Fei Wang;Shirin Zahrei;S. Bhumireddy;Yilin Wang;Jiamin Zheng;R. M;al;al;Jason R B Dyck
  • 通讯作者:
    Jason R B Dyck
Examination of gender differences using the multiple groups DINA model
使用多组 DINA 模型检查性别差异
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mathew Johnson;Young;R. Sachdeva;Jianzhou Zhang;M. Waldman;Jung Yeon Park
  • 通讯作者:
    Jung Yeon Park
Campus Classification, Identity, and Change: The Elective Carnegie Classification for Community Engagement
校园分类、身份和变化:社区参与的选修卡内基分类
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    John A. Saltmarsh;Mathew Johnson
  • 通讯作者:
    Mathew Johnson
Defining Planktonic Protist Functional Groups on Mechanisms for Energy and Nutrient Acquisition: Incorporation of Diverse Mixotrophic Strategies.
定义浮游原生生物功能群的能量和营养获取机制:多种混合营养策略的结合。
  • DOI:
    10.1016/j.protis.2016.01.003
  • 发表时间:
    2024-09-14
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Aditee Mitra;K. Flynn;U. Tillmann;J. Raven;D. Caron;D. Stoecker;F. Not;P. J. Hansen;G. Hallegraeff;R. S;ers;ers;Susanne Wilken;G. McManus;Mathew Johnson;P. Pitta;Selina Våge;Terje Berge;A. Calbet;F. Thingstad;H. Jeong;J. Burkholder;P. Glibert;E. Granéli;Veronica M. Lundgren
  • 通讯作者:
    Veronica M. Lundgren

Mathew Johnson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mathew Johnson', 18)}}的其他基金

Conference: 2024 KUMUNU-ISU Conference on PDE, Dynamical Systems and Applications
会议:2024 年 KUMUNU-ISU 偏微分方程、动力系统和应用会议
  • 批准号:
    2349508
  • 财政年份:
    2024
  • 资助金额:
    $ 27.24万
  • 项目类别:
    Standard Grant
Modulations of Periodic Waves in Applied Mathematics
应用数学中的周期波调制
  • 批准号:
    2108749
  • 财政年份:
    2021
  • 资助金额:
    $ 27.24万
  • 项目类别:
    Standard Grant
Decent Work and the city
体面劳动与城市
  • 批准号:
    MR/T019433/1
  • 财政年份:
    2020
  • 资助金额:
    $ 27.24万
  • 项目类别:
    Fellowship
4th Annual KUMUNU Conference in Partial Differential Equations, Dynamical Systems and Applications
第四届偏微分方程、动力系统和应用 KUMUNU 年度会议
  • 批准号:
    1753332
  • 财政年份:
    2018
  • 资助金额:
    $ 27.24万
  • 项目类别:
    Standard Grant
Existence, Stability, and Dynamics of Nonlinear Waves
非线性波的存在性、稳定性和动力学
  • 批准号:
    1614785
  • 财政年份:
    2016
  • 资助金额:
    $ 27.24万
  • 项目类别:
    Standard Grant
Existence, Stability, and Dynamics of Nonlinear Waves
非线性波的存在性、稳定性和动力学
  • 批准号:
    1614785
  • 财政年份:
    2016
  • 资助金额:
    $ 27.24万
  • 项目类别:
    Standard Grant
Stability of Nonlinear Waves in Dissipative and Dispersive PDE
耗散和色散偏微分方程中非线性波的稳定性
  • 批准号:
    1211183
  • 财政年份:
    2012
  • 资助金额:
    $ 27.24万
  • 项目类别:
    Standard Grant
PostDoctoral Research Fellowship
博士后研究奖学金
  • 批准号:
    0902192
  • 财政年份:
    2009
  • 资助金额:
    $ 27.24万
  • 项目类别:
    Fellowship Award

相似国自然基金

绞股蓝皂苷A通过抑制脱硫弧菌产生硫化氢下调FXR-SHP轴预防胆囊结石的作用及其机制研究
  • 批准号:
    82374215
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
Sulforaphane通过LRRK2调控巨噬细胞介导的肾脏纤维化参与草酸钙肾结石的发生和发展
  • 批准号:
    82370763
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
靶向肠道SOAT2抑制胆固醇和脂肪酸摄取预防合并脂肪肝型胆固醇结石病形成的机制研究
  • 批准号:
    82370649
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
CLUSTERIN蛋白异常表达通过Hippo/YAP通路促进肾草酸钙结石发生发展的机制研究
  • 批准号:
    82300861
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
尿液Exosomes中lncRNA表达谱分析在肾结石肾纤维化早期诊断中的应用价值研究
  • 批准号:
    82360157
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Predictable Variations in Stochastic Calculus
随机微积分的可预测变化
  • 批准号:
    EP/Y024524/1
  • 财政年份:
    2023
  • 资助金额:
    $ 27.24万
  • 项目类别:
    Research Grant
Rigidity, Stability, Regularity, and Resolution Theorems in the Geometric Calculus of Variations
几何变分演算中的刚性、稳定性、正则性和解析定理
  • 批准号:
    2247544
  • 财政年份:
    2023
  • 资助金额:
    $ 27.24万
  • 项目类别:
    Continuing Grant
CAREER: Harmonic Analysis and the Stability of Singularities in the Calculus of Variations
职业:变分演算中的调和分析和奇点稳定性
  • 批准号:
    2143719
  • 财政年份:
    2022
  • 资助金额:
    $ 27.24万
  • 项目类别:
    Continuing Grant
Calculus of variations and optimal mass transportation: theory and applications
变分法和最佳公共交通:理论与应用
  • 批准号:
    RGPIN-2019-06173
  • 财政年份:
    2022
  • 资助金额:
    $ 27.24万
  • 项目类别:
    Discovery Grants Program - Individual
Calculus of variations and optimal mass transportation: theory and applications
变分法和最佳公共交通:理论与应用
  • 批准号:
    RGPIN-2019-06173
  • 财政年份:
    2022
  • 资助金额:
    $ 27.24万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了