Collaborative Research: DMS/NIGMS 1: Simulating cell migration with a multi-scale 3D model fed by intracellular tension sensing measurements
合作研究:DMS/NIGMS 1:使用由细胞内张力传感测量提供的多尺度 3D 模型模拟细胞迁移
基本信息
- 批准号:2347956
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-07-01 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This is a Collaborative Project between Indiana University Indianapolis and Purdue University. Cell migration plays a major role in many settings including cancer metastasis, wound healing, and the immune response. For example, breast cancer cell migration is considered a major risk factor for metastatic bone or lung tumors and fibroblast migration in wound healing has roles in diabetes and necrotizing enterocolitis (life-threatening intestinal wounds that affect 10% of premature babies). This project aims to understand the intrinsic properties of cell migration, i.e., how internal forces of a cell respond to the properties of the surrounding, external environment and drive cell migration. To do this, The PIs will develop a novel mathematical model of a migrating cell. The model combines pre-existing knowledge of cell migration and cell properties with an imaging method that can measure subcellular forces. The model will yield force information throughout the cell, not just at the measurement locations. Accompanying that model with appropriate statistical analysis will help identify how the external environment can effect migration via internal subcellular force generation. This, in turn, will help us better understand how to inhibit (e.g. cancer) or promote (e.g. wound healing) cell migration in order to improve patient outcomes. The project will mentor and train graduates from multiple disciplines, undergraduates from institutions lacking research opportunities through Indiana University Indianapolis’s NSF-DMS REU program, and socioeconomically disadvantaged high schoolers through the American Chemical Society Project SEED/STEM. Plans include outreach via presentations and minisymposia at several conferences, open-access publications, YouTube postings, in-class modules, local community presentations (Science on Tap), and the STEM Youth Enrichment Summer program for underrepresented high schoolers. Cell migration is driven by its intracellular forces but is mainly directed by extracellular properties and perturbations. To understand how extracellular properties determine internal forces to direct cell migration, the PIs plan to accomplish three specific aims: 1) Develop a model that integrates experimentally measured intracellular tensions and uses them to establish a force architecture throughout the cell, 2) Use that model and the experimental measurements to identify which subcellular components play major roles in cell migration, and 3) Use modeling and experiments to understand the response of internal forces and migration of the cell to the external properties. Through this approach the PIs will be able to identify several primary pathways (external properties to subcellular components to directed motion) by which external properties use subcellular forces to direct migration. In the model, the cell will be represented by a set of interconnected viscoelastic springs modeling the membrane and other subcellular components. The flow will be modeled using a novel lattice-Boltzmann approach for steady-state Stokes flow. Fluid-structure interaction will be modeled using the immersed boundary method. The model will be calibrated and validated using the experiments. The internal tension experiments will use imaging methods and various molecular tension sensors to capture the force landscape within a cell, particularly at focal adhesions, cytoskeletal junctures, and the nuclear envelope. The external environmental alteration will include the extracellular matrix stiffness, chemotactic gradient, and flow properties. Correlation, sensitivity, and principal component analyses will be used to identify potential migratory pathways.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这是印第安纳大学印第安纳波利斯分校和普渡大学之间的合作项目,细胞迁移在许多情况下发挥着重要作用,包括癌症转移、伤口愈合和免疫反应,例如,乳腺癌细胞迁移被认为是骨转移的主要危险因素。或肺部肿瘤和成纤维细胞迁移在伤口愈合中在糖尿病和坏死性小肠结肠炎(影响 10% 早产儿的危及生命的肠道伤口)中发挥作用。该项目旨在了解细胞迁移的内在特性,即如何进行细胞迁移。为此,PI 将开发一种新的细胞迁移数学模型,该模型结合了细胞迁移和细胞特性的现有知识。该模型将产生整个细胞的力信息,而不仅仅是测量位置的信息,该模型与适当的统计分析将有助于确定外部环境如何通过内部亚细胞力的产生来影响迁移。反过来,这将帮助我们更好地了解如何抑制(例如癌症)或促进(例如伤口愈合)细胞迁移,以改善患者的治疗效果该项目将通过印第安纳大学印第安纳波利斯分校的 NSF-DMS REU 项目指导和培训来自多个学科的毕业生、缺乏研究机会的机构的本科生。和社会经济弱势高中生通过美国化学学会项目 SEED/STEM 计划包括通过在多个会议上的演讲和小型研讨会、开放获取出版物、YouTube 帖子、课堂模块、当地社区进行推广。演讲(Science on Tap),以及针对代表性不足的高中生的 STEM 青年丰富夏季计划。细胞迁移是由细胞内力驱动的,但主要受细胞外特性和扰动的指导。了解细胞外特性如何决定指导细胞迁移的内力, PI 计划实现三个具体目标:1) 开发一个模型,整合实验测量的细胞内张力,并使用它们建立整个细胞的力结构,2) 使用该模型和实验测量来确定哪些亚细胞成分在细胞迁移中发挥着重要作用,并且 3) 使用建模和实验来了解细胞内力和迁移对外部特性的响应。在该模型中,细胞将由一组互连的粘弹性弹簧来表示,这些弹簧对膜和其他亚细胞成分进行建模。流动将使用一种新颖的方法进行建模。稳态流-固相互作用的晶格-玻尔兹曼方法将使用浸入边界方法进行建模,并使用实验来校准和验证内部张力实验,并使用各种传感器来捕获。细胞内的力景观,特别是在粘着斑、细胞骨架接合处和核膜处。外部环境的改变将包括细胞外基质的硬度、趋化梯度和流动特性。相关性、敏感性和主成分分析将用于确定潜在的迁移途径。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jared Barber其他文献
The effect of the endothelial surface layer on cell-cell interactions in microvessel bifurcations.
内皮表面层对微血管分叉中细胞间相互作用的影响。
- DOI:
10.1007/s10237-024-01863-1 - 发表时间:
2024-06-07 - 期刊:
- 影响因子:0
- 作者:
Carlson Triebold;Jared Barber - 通讯作者:
Jared Barber
Modeling and simulation of osteocyte process–fluid interaction in a canaliculus
骨细胞过程与小管内液体相互作用的建模和模拟
- DOI:
10.1063/5.0208419 - 发表时间:
2024-06-01 - 期刊:
- 影响因子:4.6
- 作者:
Jared Barber;Maxim Mukhin;Vanessa G. Maybruck;Luoding Zhu - 通讯作者:
Luoding Zhu
Modeling and simulation of flow–osteocyte interaction in a lacuno-canalicular network
腔隙-小管网络中流动-骨细胞相互作用的建模和模拟
- DOI:
10.1063/5.0165467 - 发表时间:
2023-09-01 - 期刊:
- 影响因子:4.6
- 作者:
Jared Barber;Isaac Manring;Sophie Boileau;Luoding Zhu - 通讯作者:
Luoding Zhu
Jared Barber的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
新型双功能DMS/DMSP产生基因的作用机制与生态贡献研究
- 批准号:42306115
- 批准年份:2023
- 资助金额:20 万元
- 项目类别:青年科学基金项目
丘脑束旁核至背内侧纹状体(Pf-DMS)痕迹环路介导可卡因成瘾及电针耳穴干预的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于新型硬件的时序数据管理系统关键技术研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
西太平洋地球系统多圈层相互作用数据管理与共享平台建设战略研究(第一阶段)
- 批准号:
- 批准年份:2021
- 资助金额:100 万元
- 项目类别:
面向高能物理实验的远程边缘站点数据管理系统及关键技术研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: DMS/NIGMS 1: Simulating cell migration with a multi-scale 3D model fed by intracellular tension sensing measurements
合作研究:DMS/NIGMS 1:使用由细胞内张力传感测量提供的多尺度 3D 模型模拟细胞迁移
- 批准号:
2347957 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: DMS/NIGMS 2: Novel machine-learning framework for AFMscanner in DNA-protein interaction detection
合作研究:DMS/NIGMS 2:用于 DNA-蛋白质相互作用检测的 AFM 扫描仪的新型机器学习框架
- 批准号:
10797460 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Collaborative Research: DMS/NIGMS 1: Identifiability investigation of Multi-scale Models of Infectious Diseases
合作研究:DMS/NIGMS 1:传染病多尺度模型的可识别性研究
- 批准号:
10794480 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Collaborative Research: DMS/NIGMS 2: New statistical methods, theory, and software for microbiome data
合作研究:DMS/NIGMS 2:微生物组数据的新统计方法、理论和软件
- 批准号:
10797410 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Collaborative Research: DMS/NIGMS 1: Mesoscale Kinetic Theory of Early Mitotic Spindle Organization
合作研究:DMS/NIGMS 1:早期有丝分裂纺锤体组织的中尺度动力学理论
- 批准号:
2153399 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Standard Grant