Conference: Recent advances in nonlinear Partial Differential Equations

会议:非线性偏微分方程的最新进展

基本信息

  • 批准号:
    2346780
  • 负责人:
  • 金额:
    $ 4.4万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-04-01 至 2025-03-31
  • 项目状态:
    未结题

项目摘要

The conference ``Recent Advances in Nonlinear Partial Differential Equations” will be held from May 13-May 17, 2024, at the University of Minnesota, Twin Cities. The conference provides much needed opportunities for the participants to keep track of the significant developments in some of the most active research areas in PDEs. The schedule is carefully arranged to allow junior participants ample time to interact with experts in their area of interest. There will be a poster session where junior participants are encouraged to present their own research. Panel discussions on career developments and experts-led sessions on open problems will further enhance the involvement of participants in the conference. Speakers will be asked for permission to record their talks that will be made publicly available for a wider accessibility. Special attention will be paid to advertise and recruit participants from underrepresented groups.The study of fluid equations and Calculus of Variations (CVs) is undergoing very rapid and significant progress in recent years. The conference features a wide scope of active topics in both fluid equations and calculus of variations. Specifically, the scientific themes of the conference include (i) Computation and Computer Assisted Proofs in PDEs, (ii) Convex Integration Techniques and its Applications, (iii) Regularity theory of the Euler and Navier Stokes equations, (iv) Hydrodynamic stability in high Reynolds number regime, (v) Calculus of Variations from material sciences. Important breakthroughs have been achieved in recent years in all these closely related areas. CVs is a fertile source of ideas for many branches of PDEs including fluid equations. It is hoped that by bringing together experts from both areas a cross-fertilization is more likely to occur. Detailed logistic information on the conference can be found at https://cse.umn.edu/math/events/recent-advances-nonlinear-partial-differential-equations.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
“非线性偏微分方程的最新进展”会议将于 2024 年 5 月 13 日至 17 日在明尼苏达大学双城分校举行。该会议为与会者提供了跟踪重大进展的急需机会。在偏微分方程中一些最活跃的研究领域,日程安排经过精心安排,以便初级参与者有足够的时间与他们感兴趣的领域的专家互动。将有一个海报会议,鼓励初级参与者展示自己的研究。 。关于职业发展的小组讨论和由专家主持的关于开放问题的会议将进一步提高与会者对会议的参与度,并将特别关注将其演讲记录下来以供更广泛的人使用。近年来,流体方程和变分微积分(CV)的研究正在取得非常迅速和显着的进展,会议在流体方程和变分微积分方面讨论了广泛的活跃主题。具体来说,会议的科学主题包括(i)偏微分方程中的计算和计算机辅助证明,(ii)凸积分技术及其应用,(iii)欧拉和纳维斯托克斯方程的正则理论,(iv)高雷诺数状态下的水动力稳定性,(v)微积分近年来,所有这些密切相关的领域都取得了重要突破,它是包括流体方程在内的许多偏微分方程的丰富思想来源。希望通过汇集两个领域的专家,更有可能发生会议的详细后勤信息:https://cse.umn.edu/math/events/recent-advances-nonlinear-partial。 -微分方程。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hao Jia其他文献

Ultra-compact on-chip mode exchange device using inverse-designed silicon metasurface
使用逆向设计的硅超表面的超紧凑片上模式交换器件
Long-Distance Coherent Propagation of High-Velocity Antiferromagnetic Spin Waves.
高速反铁磁自旋波的长距离相干传播。
  • DOI:
    10.1103/physrevlett.130.096701
  • 发表时间:
    2022-11-20
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Hanchen Wang;Rundong Yuan;Yongjian Zhou;Yuelin Zhang;Jilei Chen;Song Liu;Hao Jia;Dapeng Yu;J. Ansermet;C. Song;Haiming Yu
  • 通讯作者:
    Haiming Yu
Research and Realization of ECG Classification based on Gated Recurrent Unit
基于门控循环单元的心电图分类研究与实现
  • DOI:
    10.1109/cac.2018.8623219
  • 发表时间:
    2018-11-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hao Jia;Yaping Deng;Pengcheng Li;Xiaodong Qiu;Yufei Tao
  • 通讯作者:
    Yufei Tao
Rapid and Precise Diagnosis of Retroperitoneal Liposarcoma with Deep-Learned Label-Free Molecular Microscopy.
使用深度学习的无标记分子显微镜快速准确地诊断腹膜后脂肪肉瘤。
  • DOI:
    10.1021/acs.analchem.3c05417
  • 发表时间:
    2024-05-29
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Wanhui Zhou;Daoning Liu;Tinghe Fang;Xun Chen;Hao Jia;Xiu;Chunyi Hao;Shuhua Yue
  • 通讯作者:
    Shuhua Yue
Efficient electrochemical decomposition of sulfamethoxazole using a novel free-standing TiN anode
使用新型独立式 TiN 阳极有效电化学分解磺胺甲恶唑
  • DOI:
    10.1016/j.horiz.2023.100059
  • 发表时间:
    2023-09-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Guoshuai Liu;Ming Liu;Han Shi;Hao Jia;Hua Zou;Nan Tao
  • 通讯作者:
    Nan Tao

Hao Jia的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hao Jia', 18)}}的其他基金

FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245021
  • 财政年份:
    2023
  • 资助金额:
    $ 4.4万
  • 项目类别:
    Standard Grant
CAREER: New Mechanisms for Stability, Regularity and Long Time Dynamics of Partial Differential Equations
职业:偏微分方程稳定性、正则性和长期动力学的新机制
  • 批准号:
    1945179
  • 财政年份:
    2020
  • 资助金额:
    $ 4.4万
  • 项目类别:
    Continuing Grant

相似国自然基金

曲面双曲守恒律方程的时间连续最近点方法
  • 批准号:
    12301530
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
最近两个冰期旋回东亚夏季风与西风相互作用的模拟研究
  • 批准号:
    42171152
  • 批准年份:
    2021
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
季风边缘区:理解最近130ka以来中国半干旱-半湿润过渡带的环境变化
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    39.9 万元
  • 项目类别:
季风边缘区:理解最近130ka以来中国半干旱—半湿润过渡带的环境变化
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    万元
  • 项目类别:
    国际(地区)合作与交流项目
最近5000年中国西北干旱区果树利用及环境适应的木材记录研究
  • 批准号:
    42002202
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Conference: Geometric Measure Theory, Harmonic Analysis, and Partial Differential Equations: Recent Advances
会议:几何测度理论、调和分析和偏微分方程:最新进展
  • 批准号:
    2402028
  • 财政年份:
    2024
  • 资助金额:
    $ 4.4万
  • 项目类别:
    Standard Grant
Conference: IHES 2023 Summer School: Recent advances in algebraic K-theory
会议:IHES 2023 暑期学校:代数 K 理论的最新进展
  • 批准号:
    2304723
  • 财政年份:
    2023
  • 资助金额:
    $ 4.4万
  • 项目类别:
    Standard Grant
Conference: Recent advances in the mechanistic understanding of avian responses to environmental challenges
会议:鸟类应对环境挑战的机制理解的最新进展
  • 批准号:
    2336743
  • 财政年份:
    2023
  • 资助金额:
    $ 4.4万
  • 项目类别:
    Standard Grant
Conference: Recent Advances in Mathematical Fluid Dynamics
会议:数学流体动力学的最新进展
  • 批准号:
    2247145
  • 财政年份:
    2023
  • 资助金额:
    $ 4.4万
  • 项目类别:
    Standard Grant
Conference: Recent advances in applications of harmonic analysis to convex geometry
会议:调和分析在凸几何中的应用的最新进展
  • 批准号:
    2246779
  • 财政年份:
    2023
  • 资助金额:
    $ 4.4万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了