CAREER: Towards Privacy and Fairness in Multi-Sided Platforms
职业:在多边平台中实现隐私和公平
基本信息
- 批准号:2344925
- 负责人:
- 金额:$ 55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Individuals’ lives and societal outcomes are increasingly mediated by opaque machine learning algorithms chosen and run by multi-sided online platforms using private data. Although the platforms often claim that their algorithms take into consideration the interests of the sides and preserve privacy, these claims are not well-defined. Furthermore, the platforms’ algorithms also optimize for their own objectives, such as financial or user growth. The resulting algorithmic decision-making systems and their outcomes may be at odds with the interests of platform participants and societal values.The project is following a research agenda consisting of two main thrusts. The first aims to enable the deployment of differential privacy for data sharing in platform-specific contexts, so as to ensure rigorous privacy protections for platform participants while enabling the platform to pursue its objectives. We take advantage of platform-specific capabilities to develop learning-augmented and security-augmented frameworks for reasoning about and deploying differential privacy. The second research thrust investigates undesirable consequences of opaque optimizations and proposes definitions that could encode platform participants’ or societal desiderata regarding the outcomes of such optimization. It then analyzes algorithmic, systems, and policy approaches for achieving them and quantitatively evaluates the impact of enforcing such constraints.Both research thrusts advance the societally important goals of enabling data-driven innovation by multi-sided platforms while preserving privacy and fairness for their participants.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
个人的生活和社会成果越来越多地受到多边在线平台使用私人数据选择和运行的不透明机器学习算法的影响,尽管这些平台经常声称他们的算法考虑了各方的利益并保护隐私,但这些说法是不正确的。此外,平台的算法也会针对自己的目标进行优化,例如财务或用户增长,由此产生的算法决策系统及其结果可能与平台参与者的利益和社会价值观相矛盾。项目遵循一个由两个主要部分组成的研究议程第一个目标是在特定于平台的环境中部署数据共享的差异隐私,以确保对平台参与者的严格隐私保护,同时使平台能够利用特定于平台的能力来发展。第二个研究重点是研究不透明优化的不良后果,并提出可以对平台参与者或社会对此类优化结果的需求进行编码的定义。然后是实现这些目标的算法、系统和政策方法,并定量评估实施此类约束的影响。这两项研究共同推进了多边平台实现数据驱动创新的社会重要目标,同时保护参与者的隐私和公平。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Fairness in matching under uncertainty
不确定性下匹配的公平性
- DOI:
- 发表时间:2023-07
- 期刊:
- 影响因子:0
- 作者:Devic, Siddartha;Kempe, David;Sharan, Vatsal;Korolova, Aleksandra
- 通讯作者:Korolova, Aleksandra
Discrimination through Image Selection by Job Advertisers on Facebook
Facebook 上招聘广告商通过图像选择造成的歧视
- DOI:10.1145/3593013.3594115
- 发表时间:2023-06
- 期刊:
- 影响因子:0
- 作者:Nagaraj Rao, Varun;Korolova, Aleksandra
- 通讯作者:Korolova, Aleksandra
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Aleksandra Korolova其他文献
Aleksandra Korolova的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Aleksandra Korolova', 18)}}的其他基金
SaTC: CORE: Medium: Collaborative Research: Understanding and Mitigating the Privacy and Societal Risks of Advanced Advertising Targeting and Tracking
SaTC:核心:媒介:协作研究:理解和减轻高级广告定位和跟踪的隐私和社会风险
- 批准号:
2333448 - 财政年份:2022
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
CAREER: Towards Privacy and Fairness in Multi-Sided Platforms
职业:在多边平台中实现隐私和公平
- 批准号:
1943584 - 财政年份:2020
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
SaTC: CORE: Medium: Collaborative Research: Understanding and Mitigating the Privacy and Societal Risks of Advanced Advertising Targeting and Tracking
SaTC:核心:媒介:协作研究:理解和减轻高级广告定位和跟踪的隐私和社会风险
- 批准号:
1916153 - 财政年份:2019
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
CRII: SaTC: Democratizing Differential Privacy via Algorithms for Hybrid Models
CRII:SaTC:通过混合模型算法使差异隐私民主化
- 批准号:
1755992 - 财政年份:2018
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
相似国自然基金
脚手架蛋白RanBP9通过调控细胞周期停滞和获得SASP介导应激性衰老促进AKI向CKD转化的作用及机制
- 批准号:82300777
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Fbxw7缺失促进EGFR突变肺腺癌向肺鳞癌转分化的功能和机制研究
- 批准号:82303039
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
深大水库热分层驱动下微塑料垂向迁移特征及其动态影响机制
- 批准号:42377263
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于颅内外同步静息态脑电与多尺度有向脑网络的致痫区定位研究
- 批准号:82371453
- 批准年份:2023
- 资助金额:65 万元
- 项目类别:面上项目
巨噬细胞来源的CCL1通过NF-κB/GLI1/KLF4通路调控血管平滑肌细胞向肌成纤维细胞的表型转化从而促进川崎病冠脉狭窄病变的机制研究
- 批准号:82370510
- 批准年份:2023
- 资助金额:47 万元
- 项目类别:面上项目
相似海外基金
CAREER: Towards Fairness in the Real World under Generalization, Privacy and Robustness Challenges
职业:在泛化、隐私和稳健性挑战下实现现实世界的公平
- 批准号:
2339198 - 财政年份:2024
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
CAREER: SaTC: Towards Machine-learnable Enhancing Framework for Local Differential Privacy
职业:SaTC:面向本地差异隐私的机器学习增强框架
- 批准号:
2238680 - 财政年份:2023
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
CAREER: Towards Privacy-Preserving Wireless Communication: Fundamental Limits and Coding Schemes
职业:走向保护隐私的无线通信:基本限制和编码方案
- 批准号:
2401373 - 财政年份:2023
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
CAREER: Towards Privacy-Preserving Wireless Communication: Fundamental Limits and Coding Schemes
职业:走向保护隐私的无线通信:基本限制和编码方案
- 批准号:
2047913 - 财政年份:2021
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
CAREER: Towards Privacy and Fairness in Multi-Sided Platforms
职业:在多边平台中实现隐私和公平
- 批准号:
1943584 - 财政年份:2020
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant