CRII: SaTC: Democratizing Differential Privacy via Algorithms for Hybrid Models
CRII:SaTC:通过混合模型算法使差异隐私民主化
基本信息
- 批准号:1755992
- 负责人:
- 金额:$ 17.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-06-01 至 2021-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Individuals generate enormous amounts of personal data that are subsequently collected and stored by organizations and governments. The data powers many innovative applications in areas such as web services, health care, and transportation, but they also increase privacy risks. Differential privacy, a framework to rigorously reason about privacy properties of algorithms, holds tremendous promise for enabling privacy-preserving yet useful data analyses. However, its adoption has been limited to entities with massive user bases. This project aims to democratize the ability to deploy differential privacy by making it practical for entities with smaller user bases. Research activities in this project include formulation of a new, hybrid, privacy model that models heterogeneous privacy preferences of individuals and current industry practices. The project also develops novel algorithms that preserve differential privacy while taking advantage of the hybrid model to improve utility outcomes, and evaluation of their performance. The work makes progress towards eliminating one of the significant barriers to data-driven innovation by expanding the applicability of differential privacy to a wider range of entities.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
个人产生大量的个人数据,随后由组织和政府收集和存储。这些数据为网络服务、医疗保健和交通等领域的许多创新应用提供了动力,但它们也增加了隐私风险。差分隐私是一个严格推理算法隐私属性的框架,它为实现隐私保护且有用的数据分析带来了巨大的希望。然而,它的采用仅限于拥有大量用户群的实体。该项目旨在通过使其适用于用户群较小的实体,使部署差异隐私的能力民主化。该项目的研究活动包括制定一个新的混合隐私模型,该模型对个人的异构隐私偏好和当前的行业实践进行建模。该项目还开发了新颖的算法,可以保护差异隐私,同时利用混合模型来改善效用结果及其性能评估。这项工作通过将差异隐私的适用性扩大到更广泛的实体,在消除数据驱动创新的重大障碍之一方面取得了进展。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优势进行评估,被认为值得支持以及更广泛的影响审查标准。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Power of the Hybrid Model for Mean Estimation
平均估计混合模型的威力
- DOI:10.2478/popets-2020-0062
- 发表时间:2018-11-29
- 期刊:
- 影响因子:0
- 作者:Yatharth Dubey;A. Korolova
- 通讯作者:A. Korolova
Institutional privacy risks in sharing DNS data
共享 DNS 数据的机构隐私风险
- DOI:10.1145/3472305.3472324
- 发表时间:2021-07
- 期刊:
- 影响因子:0
- 作者:Imana, Basileal;Korolova, Aleksandra;Heidemann, John
- 通讯作者:Heidemann, John
Auditing for Discrimination in Algorithms Delivering Job Ads
审核招聘广告算法中的歧视行为
- DOI:10.1145/3442381.3450077
- 发表时间:2021-04
- 期刊:
- 影响因子:0
- 作者:Imana, Basileal;Korolova, Aleksandra;Heidemann, John
- 通讯作者:Heidemann, John
Advances and Open Problems in Federated Learning
联邦学习的进展和未解决的问题
- DOI:10.1561/2200000083
- 发表时间:2021-01
- 期刊:
- 影响因子:0
- 作者:Kairouz, Edited by:;McMahan, H. Brendan
- 通讯作者:McMahan, H. Brendan
The Power of Synergy in Differential Privacy: Combining a Small Curator with Local Randomizers
差异隐私中协同的力量:将小型策展人与本地随机发生器相结合
- DOI:10.4230/lipics.itc.2020.14
- 发表时间:2020-06
- 期刊:
- 影响因子:0
- 作者:Beimel, Amos;Korolova, Aleksandra;Nissim, Kobbi;Sheffet, Or;Stemmer, Uri
- 通讯作者:Stemmer, Uri
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Aleksandra Korolova其他文献
Aleksandra Korolova的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Aleksandra Korolova', 18)}}的其他基金
CAREER: Towards Privacy and Fairness in Multi-Sided Platforms
职业:在多边平台中实现隐私和公平
- 批准号:
2344925 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Continuing Grant
SaTC: CORE: Medium: Collaborative Research: Understanding and Mitigating the Privacy and Societal Risks of Advanced Advertising Targeting and Tracking
SaTC:核心:媒介:协作研究:理解和减轻高级广告定位和跟踪的隐私和社会风险
- 批准号:
2333448 - 财政年份:2022
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
CAREER: Towards Privacy and Fairness in Multi-Sided Platforms
职业:在多边平台中实现隐私和公平
- 批准号:
1943584 - 财政年份:2020
- 资助金额:
$ 17.5万 - 项目类别:
Continuing Grant
SaTC: CORE: Medium: Collaborative Research: Understanding and Mitigating the Privacy and Societal Risks of Advanced Advertising Targeting and Tracking
SaTC:核心:媒介:协作研究:理解和减轻高级广告定位和跟踪的隐私和社会风险
- 批准号:
1916153 - 财政年份:2019
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
相似海外基金
SaTC: CORE: Small: An evaluation framework and methodology to streamline Hardware Performance Counters as the next-generation malware detection system
SaTC:核心:小型:简化硬件性能计数器作为下一代恶意软件检测系统的评估框架和方法
- 批准号:
2327427 - 财政年份:2024
- 资助金额:
$ 17.5万 - 项目类别:
Continuing Grant
CRII: SaTC: Privacy vs. Accountability--Usable Deniability and Non-Repudiation for Encrypted Messaging Systems
CRII:SaTC:隐私与责任——加密消息系统的可用否认性和不可否认性
- 批准号:
2348181 - 财政年份:2024
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
SaTC: EDU: AI for Cybersecurity Education via an LLM-enabled Security Knowledge Graph
SaTC:EDU:通过支持 LLM 的安全知识图进行网络安全教育的人工智能
- 批准号:
2335666 - 财政年份:2024
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
- 批准号:
2317232 - 财政年份:2024
- 资助金额:
$ 17.5万 - 项目类别:
Continuing Grant
SaTC: CORE: Medium: Increasing user autonomy and advertiser and platform responsibility in online advertising
SaTC:核心:中:增加在线广告中的用户自主权以及广告商和平台责任
- 批准号:
2318290 - 财政年份:2024
- 资助金额:
$ 17.5万 - 项目类别:
Continuing Grant