CAREER: Dynamic Locomotion with Plasticity for Remote Sensing in Crawlspaces
职业:具有可塑性的动态运动,用于狭小空间的遥感
基本信息
- 批准号:2340278
- 负责人:
- 金额:$ 68.12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-03-01 至 2029-02-28
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Crawlspaces are everywhere: caves, karst landscapes, shafts, ducts, ballast tanks, pipes, and grain elevators. Data from these environments holds immense scientific (biodiversity and geological processes), societal (archaeological and cultural remains), environmental (natural resources and mineral deposits), and health-security-economical (asset management and monitoring) significance. However, human operation in crawlspaces is costly, slow, and risky. Existing snake and insect robots can crawl in pipes and operate within centimeter-scale spaces; however, they are too slow or not completely autonomous. There is a pressing need for fast, agile, and efficient autonomous systems specifically designed for crawlspaces. Legged locomotion and multi-rotor flight show promise in addressing this challenge, having already revolutionized numerous remote sensing tasks by surpassing the capabilities of any other robot category. However, their operation remains limited to spacious tunnels. This Faculty Early Career Development (CAREER) project supports research that seeks to harness the exceptional agility, efficiency, and speed of legged and rotary-wing robots and adapt it specifically for use in crawlspaces. The project designs a multi-modal robot with extensive locomotion plasticity capable of efficiently traversing extremely tight crawlspaces with agility through bipedal walking and flying. Furthermore, this project aims to promote gender equity in Northeastern University’s robotics program, a significant area of growth identified by school leadership.Achieving efficient, agile, and fast legged-aerial locomotion in crawlspaces represents a new advancement in robot locomotion. Three knowledge gaps still exist in bridging legged locomotion and multi-rotor flight in crawlspaces: (1) Actuation challenges hinder the scalability of motion control performance, necessary for fast and precise foot placement, when transitioning from legged robots designed for open spaces to smaller robots operating in crawlspaces; (2) Instability issues arising from multi-rotors’ air jets near surfaces pose flight immobilization risks; (3) Crawlspaces need several modes of locomotion and there is no systematic robot design framework to accommodate the requirements dictated by these modes. This project will engage in fundamental research to address these gaps, designing a bioinspired locomotion robot capable of walking, hovering, jumping, and running over inclined surfaces to push the operational envelope of mobile robots, making autonomous operations inside extremely tight crawlspaces possible. The project’s efforts revolve around robot and control design. This project’s key areas of innovation include (1) Introducing actuation design paradigms for small robots based on computational structure design for achieving comparable motion control performance seen in large robots; (2) Research and validation of new locomotion feats and underlying models and nonlinear controllers based on the integration of posture manipulation and thrust vectoring to overcome air jet risks in aerial robotics; (3) Co-designing robots and controls through generative design methods to accommodate conflicting requirements imposed by many locomotion modes.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
狭小的空间无处不在:洞穴、喀斯特景观、竖井、管道、压载舱、管道和谷物升降机。来自这些环境的数据蕴藏着巨大的科学(生物多样性和地质过程)、社会(考古和文化遗迹)、环境(自然资源和矿物)的数据。然而,人类在爬行空间中的操作成本高昂、速度缓慢且存在风险。管道并在厘米级空间内运行;然而,它们速度太慢或不完全自主,迫切需要专为爬行空间设计的快速、敏捷和高效的自主系统,这在解决这一问题方面表现出了希望。这项挑战已经超越了任何其他机器人类别的能力,彻底改变了许多遥感任务,但是,他们的操作仍然仅限于宽敞的隧道,该学院早期职业发展(职业)项目支持寻求利用卓越敏捷性和效率的研究。 ,该项目设计了一种具有广泛运动可塑性的多模态机器人,能够通过双足行走和飞行灵活地高效穿越极其狭窄的狭小空间。促进东北大学机器人项目中的性别平等,这是学校领导层确定的一个重要增长领域。在爬行空间中实现高效、敏捷和快速的腿式空中运动代表了一种新的技术机器人运动的进步在桥接腿式运动和爬行空间中的多旋翼飞行方面仍然存在三个知识差距:(1)驱动挑战阻碍了运动控制性能的可扩展性,而运动控制性能是快速和精确的足部放置所必需的,当从专为机器人设计的腿式机器人过渡时。为在狭小空间中运行的小型机器人提供开放空间;(2) 多旋翼喷气机在表面附近产生的不稳定问题会带来飞行固定风险;(3) 狭小空间需要多种运动模式;并且没有系统的机器人设计框架来满足这些模式所规定的要求,该项目将进行基础研究来解决这些差距,设计一种能够在倾斜表面上行走、悬停、跳跃和奔跑的仿生运动机器人。该项目的主要创新领域包括(1)引入基于计算结构设计的小型机器人的驱动设计范例,以实现可比性。大型机器人的运动控制性能;(2)基于姿态操纵和推力矢量集成的新运动特性和底层模型以及非线性控制器的研究和验证,以克服空中机器人中的喷气风险;通过生成设计方法进行控制,以适应许多运动模式所施加的相互冲突的要求。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alireza Ramezani其他文献
TWO-YEAR RESULTS OF A RANDOMIZED TRIAL OF INTRAVITREAL BEVACIZUMAB ALONE OR COMBINED WITH TRIAMCINOLONE VERSUS LASER IN DIABETIC MACULAR EDEMA
玻璃体内注射贝伐珠单抗单独或联合曲安西龙与激光治疗糖尿病性黄斑水肿的两年随机试验结果
- DOI:
10.1097/iae.0b013e31822f55de - 发表时间:
2012-02-01 - 期刊:
- 影响因子:0
- 作者:
M. Soheilian;K. H. Garfami;Alireza Ramezani;M. Yaseri;G. Peyman - 通讯作者:
G. Peyman
Prevalence and Risk Factors of Diabetic Retinopathy in Yazd Province
亚兹德省糖尿病视网膜病变的患病率和危险因素
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
M. Dehghan;M. Katibeh;H. Ahmadieh;Alireza Ramezani;S. Moradian;R. Noorinia;H. Ziaei;A. Mahdavi;M. Yaseri;Jalil Naghib;A. Toosi;M. Azarmina;K. Roohi;M. Javadi - 通讯作者:
M. Javadi
A randomized, placebo-controlled clinical trial of intravitreal triamcinolone for refractory diabetic macular edema
玻璃体内注射曲安西龙治疗难治性糖尿病黄斑水肿的随机、安慰剂对照临床试验
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
M. Dehghan;H. Ahmadieh;Alireza Ramezani;M. Entezari;A. Anisian - 通讯作者:
A. Anisian
Unilateral Decreased Vision in a Middle-Aged Man
中年男性单侧视力下降
- DOI:
- 发表时间:
2013-01-01 - 期刊:
- 影响因子:2
- 作者:
Alireza Ramezani;A. Lashay;A. Mansour;T. Banaee - 通讯作者:
T. Banaee
INITIAL MACULAR THICKNESS AND RESPONSE TO TREATMENT IN DIABETIC MACULAR EDEMA
糖尿病黄斑水肿的初始黄斑厚度和治疗反应
- DOI:
10.1097/iae.0b013e31820bde7d - 发表时间:
2011-09-01 - 期刊:
- 影响因子:0
- 作者:
M. Soheilian;Alireza Ramezani;M. Yaseri;S. A. Mirdehghan;A. Obudi;Bijan Bijanzadeh - 通讯作者:
Bijan Bijanzadeh
Alireza Ramezani的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alireza Ramezani', 18)}}的其他基金
Collaborative Research: Design, Flight Control, and Autonomous Navigation of Bioinspired Morphing Micro Aerial Vehicles for Operation in Confined Spaces
合作研究:用于密闭空间操作的仿生变形微型飞行器的设计、飞行控制和自主导航
- 批准号:
2142519 - 财政年份:2022
- 资助金额:
$ 68.12万 - 项目类别:
Standard Grant
相似国自然基金
运动舰船及动态尾迹的毫米波辐射机理与多维特性研究
- 批准号:62371159
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
基于动态视觉与运动控制的路面裂缝实时寻迹跟踪关键方法研究
- 批准号:52378431
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
融合时空模型与先验的运动场景连续高动态成像方法研究
- 批准号:62371175
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
面向非抓持式动态作业任务的腿足机器人技能学习与运动控制研究
- 批准号:62373223
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
耦合运动与不变性先验的消化道动态高分辨磁共振成像方法及应用
- 批准号:62331028
- 批准年份:2023
- 资助金额:240 万元
- 项目类别:重点项目
相似海外基金
Interrogating the Dynamic Neural Computation of the Sense of Direction
质疑方向感的动态神经计算
- 批准号:
10752171 - 财政年份:2023
- 资助金额:
$ 68.12万 - 项目类别:
Generation of Motor Cortical Dynamics Controlling Skilled Locomotion
产生控制熟练运动的运动皮层动力学
- 批准号:
10732888 - 财政年份:2023
- 资助金额:
$ 68.12万 - 项目类别:
Dynamic switching in the brainstem: a spatiotemporal mechanism for the neural control of breathing
脑干的动态切换:呼吸神经控制的时空机制
- 批准号:
10594393 - 财政年份:2022
- 资助金额:
$ 68.12万 - 项目类别:
Portable, robotic footwear for real-time control of foot-ground stiffness
用于实时控制足部地面刚度的便携式机器人鞋
- 批准号:
10678900 - 财政年份:2022
- 资助金额:
$ 68.12万 - 项目类别:
Dynamic switching in the brainstem: a spatiotemporal mechanism for the neural control of breathing
脑干的动态切换:呼吸神经控制的时空机制
- 批准号:
10594393 - 财政年份:2022
- 资助金额:
$ 68.12万 - 项目类别: