CAREER: Frequency Agile Real-Time Reconfigurable RF Analog Co-Processor Design Leveraging Engineered Nanoparticle and 3D Printing
职业:利用工程纳米颗粒和 3D 打印进行频率捷变实时可重构射频模拟协处理器设计
基本信息
- 批准号:2340268
- 负责人:
- 金额:$ 55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-09-01 至 2029-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The demand for high speed, reliable, and high data rate transmission are continuously increasing, and emerging upscaled spectrum and efficient spectrum utilization are key methodologies to support those urgent needs. However, the new spectrum with wide instantaneous bands brings unprecedented challenges for filters design, high performance analog to digital converters design, and digital signal processors design in conventional hardware systems. Therefore, this project aims to investigate reconfigurable real-time radio frequency (RF) analog co-processor in low-cost compact form factor to reduce the processing load in digital domain, which can accelerate computation speed, save the energy consumption, and reduce the overall system cost. The RF analog co-processor will lead to new solutions for developing future communication and computing hardware platforms, and the research outcome can be directly applied to radar, 5G/6G/NextG wireless communications, autonomous driving, internet of things (IoT), quantum computing, AI, machine learning, wireless sensing, smart city, smart health, and smart living. In addition, leveraging advanced 3D printing and phase-changing nanoparticle-controlled composite ink development for compact printable RF co-processor design will pave the way towards novel low-cost fast-paced design methodology in RF/microwave components, circuit, and wireless system with new features and high degrees of flexibility, tunability and adaptability. The education and outreach effort in this project will broaden the participation of underrepresented minority students in HBCU in the engineering fields, both locally and across the nation. Furthermore, the model of research and education plan in this project will be excellent resource to help other HBCUs generate impacts in K-12, undergraduate, and graduate education, expanding the pool of diverse and multi-disciplinary talent for STEM workforce development in the U.S.The overarching goal of this CAREER project is to investigate reconfigurable real-time RF analog co-processor circuits in low-cost compact form factor by developing novel composite film with configurable dielectric characteristic and incorporating 3D printing technique. To be specific: 1) An RF analog co-processor will be developed to perform configurable mathematical operations directly at its electromagnetic waveform domain to relax high computational load in digital signal processing. 2) A film with configurable dielectric property will be developed by manipulating the shape, size, and filling factor of phase-changing nanoparticles in carrier matrix material to achieve frequency-tunable RF analog co-processor. 3) With the printable phase-changing composite ink, a simultaneous metal-dielectric 3D printing technique will be leveraged to fabricate the frequency-configurable RF analog co-processor in 3D compact form factor with low cost. The RF real-time configurable analog signal co-processor features the following advantages to cater the needs of high-date-rate transmission and high-speed computation with low energy consumption: a) It processes the signals directly at RF frequency in analog domain before converting them to digital domain, which accelerates the computing speed. b) It relaxes the processing demand of spectrum sensing, signal transformation, mathematical operation, signal modulation, frequency conversion, and analog/digital conversion, which reduces power consumption in digital signal processing. c) The novel printable composite material and the advanced 3D printing technique enable designs with light weight, compact size, and low cost, which facilitates the integration of these designs in complex systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
对高速、可靠和高数据速率传输的需求不断增加,新兴的升级频谱和高效频谱利用是支持这些迫切需求的关键方法。然而,具有宽瞬时频带的新频谱给传统硬件系统中的滤波器设计、高性能模数转换器设计和数字信号处理器设计带来了前所未有的挑战。因此,本项目旨在研究低成本、紧凑外形的可重构实时射频(RF)模拟协处理器,以减少数字域的处理负载,从而加快计算速度、节省能耗、降低功耗。总体系统成本。 RF模拟协处理器将为开发未来通信和计算硬件平台带来新的解决方案,研究成果可直接应用于雷达、5G/6G/NextG无线通信、自动驾驶、物联网(IoT)、量子计算、人工智能、机器学习、无线传感、智慧城市、智慧健康和智慧生活。此外,利用先进的 3D 打印和相变纳米颗粒控制复合油墨开发来实现紧凑型可打印射频协处理器设计,将为射频/微波组件、电路和无线系统中新型低成本快节奏设计方法铺平道路具有新的功能和高度的灵活性、可调性和适应性。该项目的教育和推广工作将扩大 HBCU 中代表性不足的少数族裔学生在当地和全国工程领域的参与。此外,该项目中的研究和教育计划模型将成为优秀资源,帮助其他 HBCU 在 K-12、本科和研究生教育中产生影响,扩大美国 STEM 劳动力发展的多元化和多学科人才库。该 CAREER 项目的首要目标是通过开发具有可配置介电特性的新型复合薄膜并结合 3D 打印技术,研究低成本紧凑外形的可重构实时射频模拟协处理器电路。具体来说: 1)将开发射频模拟协处理器,直接在其电磁波形域执行可配置的数学运算,以减轻数字信号处理中的高计算负载。 2)通过操纵载体基质材料中相变纳米颗粒的形状、尺寸和填充因子,将开发具有可配置介电特性的薄膜,以实现频率可调的射频模拟协处理器。 3)利用可打印相变复合油墨,将利用同时金属电介质3D打印技术以低成本制造3D紧凑外形的频率可配置射频模拟协处理器。 RF实时可配置模拟信号协处理器具有以下优点,可以满足高速率传输和低能耗高速计算的需求: a) 在模拟域中直接以RF频率处理信号,然后再进行处理。将它们转换为数字域,从而加快计算速度。 b) 放宽了频谱感知、信号变换、数学运算、信号调制、变频、模数转换等处理需求,降低了数字信号处理的功耗。 c) 新型可打印复合材料和先进的3D打印技术使得设计重量轻、尺寸紧凑、成本低,有利于这些设计在复杂系统中的集成。该奖项体现了NSF的法定使命,被认为值得支持通过使用基金会的智力优点和更广泛的影响审查标准进行评估。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bayaner Arigong其他文献
Bayaner Arigong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bayaner Arigong', 18)}}的其他基金
EAGER: Ultra Broadband Fully Integrated GaN Front End Integrated Chip
EAGER:超宽带全集成GaN前端集成芯片
- 批准号:
2332167 - 财政年份:2023
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
HBCU-UP DCL OPEN: Acquisition of Compact Wideband Integrated Near Field Passive Measurement and OTA Measurement System
HBCU-UP DCL OPEN:收购紧凑型宽带集成近场无源测量和 OTA 测量系统
- 批准号:
2230248 - 财政年份:2022
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
Track 1 EFRI DCL: Planning Grant: Brain Inspired Intelligence Distributing High Efficiency RF/Analog Signal Processing Circuit
Track 1 EFRI DCL:规划拨款:大脑启发智能分配高效射频/模拟信号处理电路
- 批准号:
2217637 - 财政年份:2022
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
Collaborative Research: SWIFT: SMALL: Continuous-tuning matrix-beamforming MIMO enabled multi-mode injection-locking passive Wi-Fi sensing
合作研究:SWIFT:SMALL:支持连续调谐矩阵波束成形 MIMO 的多模式注入锁定无源 Wi-Fi 传感
- 批准号:
2124531 - 财政年份:2021
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Tangram: Scaling into the Exascale Era with Reconfigurable Aggregated "Virtual Chips"
合作研究:SHF:小型:七巧板:通过可重构聚合“虚拟芯片”扩展到百亿亿次时代
- 批准号:
2124525 - 财政年份:2021
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
Collaborative Research: SWIFT: SMALL: Continuous-tuning matrix-beamforming MIMO enabled multi-mode injection-locking passive Wi-Fi sensing
合作研究:SWIFT:SMALL:支持连续调谐矩阵波束成形 MIMO 的多模式注入锁定无源 Wi-Fi 传感
- 批准号:
2030244 - 财政年份:2020
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Tangram: Scaling into the Exascale Era with Reconfigurable Aggregated "Virtual Chips"
合作研究:SHF:小型:七巧板:通过可重构聚合“虚拟芯片”扩展到百亿亿次时代
- 批准号:
2007796 - 财政年份:2020
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
相似国自然基金
FIP1-FANCM复合体调控水稻减数分裂重组频率的机制研究
- 批准号:32370901
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
多节点磁耦合无线电能传输系统建模及频率鲁棒控制
- 批准号:52307204
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
重复频率气体火花开关的绝缘电中性恢复机制研究
- 批准号:52377149
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
面向增强核磁共振波谱系统的频率捷变太赫兹回旋管小型化及频率一致性和功率稳定性研究
- 批准号:62371092
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
基于频率空间域信号子空间优化的叠前地震资料噪声压制方法
- 批准号:42374135
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
相似海外基金
MRI: Development of a frequency agile multistatic radio system for geospace imaging
MRI:开发用于地球空间成像的频率捷变多基地无线电系统
- 批准号:
2215567 - 财政年份:2022
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
Photonic frequency converter for spectrally agile seamless access network in millimeter-wave band
用于毫米波频段频谱敏捷无缝接入网络的光子频率转换器
- 批准号:
22K04116 - 财政年份:2022
- 资助金额:
$ 55万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: An Agile Electro-Optic Frequency Comb for Precision Near-Infrared Radial Velocity Spectroscopy with the Habitable Zone Planet Finder
合作研究:用于精确近红外径向速度光谱的敏捷电光频率梳与宜居带行星探测器
- 批准号:
2009889 - 财政年份:2020
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
Collaborative Research: An Agile Electro-Optic Frequency Comb for Precision Near-Infrared Radial Velocity Spectroscopy with the Habitable Zone Planet Finder
合作研究:用于精确近红外径向速度光谱的敏捷电光频率梳与宜居带行星探测器
- 批准号:
2009554 - 财政年份:2020
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
Collaborative Research: An Agile Electro-Optic Frequency Comb for Precision Near-Infrared Radial Velocity Spectroscopy with the Habitable Zone Planet Finder
合作研究:用于精确近红外径向速度光谱的敏捷电光频率梳与宜居带行星探测器
- 批准号:
2009955 - 财政年份:2020
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant