CAREER: A Task-Invariant Customization Framework for Lower-Limb Exoskeletons to Assist Volitional Human Motion

职业生涯:用于辅助人类意志运动的下肢外骨骼的任务不变定制框架

基本信息

  • 批准号:
    2340261
  • 负责人:
  • 金额:
    $ 57.09万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-04-01 至 2029-03-31
  • 项目状态:
    未结题

项目摘要

This Faculty Early Career Development (CAREER) award will support research that advances knowledge in the control and optimization of lower-limb exoskeletons in providing their human users with customized assistance across locomotor tasks. Conventional customization paradigms often aim at optimizing parameters of pre-defined torque profiles for specific locomotor tasks, which cannot accommodate the continuously varying activities humans perform every day. Prevalent approaches also place emphasis on minimizing slow-converging energy expenditures associated with human locomotion, which is important for able-bodied persons but might not be of high priority for individuals with pathological gaits. The goal of this project is to provide a paradigm shift from task-specific, slow convergent customization to task-invariant, rapid customization. This research will facilitate active learning and adaptation of lower-limb exoskeletons to drastically reduce the cost of gait rehabilitation for nearly a million Americans who sustain a new stroke every year. Key parameters throughout gait rehabilitation such as body-weight support ratio will be automatically customized based on stroke subject's training progress, which will otherwise be tuned by a team of therapists and engineers that usually lasts for hours. This research will also promote the use of exoskeletons for able-bodied users in manufacturing sites, warehouses, battlefields, and other relevant scenes by reducing the associated costs in control parameter customization. The integrated education plan will help cultivate the next-generation wearable robot researchers and motivating K-12 students to further pursue STEM degrees. The human subject studies and exhibits will promote the awareness of wearable technologies among the public, especially among traditionally underrepresented groups.The goals of this project are to: 1) investigate invariant assistive strategies in continuously varying locomotor tasks and environments, 2) construct a complete framework for customizing exoskeleton assistance across locomotor tasks, and 3) understand how the customization framework facilitates assistance adaptations to different user’s volitional motion and activities. Utilizing a two-layer optimization structure will rapidly determine task-invariant assistive strategies in the inner-loop through tracking the desired energetics or centroidal momentum of a virtual reference model, meanwhile updating its parameters in the outer-loop based on human performance-based cost functions. The research the PI and his team will conduct will investigate task-invariant assistive strategies that alter human body energetics and centroidal momentum, construct a complete, human-in-the-loop customization framework that rapidly customizes these two quantities, and validate its efficacy via experiments on human subjects across various locomotor tasks.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该学院早期职业发展(CAREER)奖将支持推进下肢外骨骼控制和优化知识的研究,为人类用户提供跨运动任务的定制帮助,传统的定制范例通常旨在优化预定义扭矩的参数。特定运动任务的配置文件无法适应人类每天执行的不断变化的活动,普遍的方法还强调最大限度地减少与人类运动相关的缓慢收敛的能量消耗,这对于人类运动非常重要。该项目的目标是提供从特定任务、缓慢收敛定制到任务不变、快速定制的范式转变。下肢外骨骼的改造可显着降低每年遭受新中风的近百万美国人的步态康复成本。整个步态康复的关键参数(例如体重支撑比)将根据中风自动定制。这项研究还将通过减少受试者的训练进度来促进身体健全的用户在制造现场、仓库、战场和其他相关场景中使用外骨骼。综合教育计划将有助于培养下一代可穿戴机器人研究人员,并激励 K-12 学生进一步攻读 STEM 学位。人类主题研究和展览将提高人们对可穿戴技术的认识。该项目的目标是:1)研究不断变化的运动任务和环境中不变的辅助策略,2)构建一个完整的框架,用于跨运动任务定制外骨骼辅助,3)了解如何定制框架有助于适应不同用户的意志运动和活动,利用两层优化结构将通过内循环快速确定任务不变的辅助策略。跟踪虚拟参考模型所需的能量或质心动量,同时根据基于人类绩效的成本函数更新其外环参数。PI 和他的团队将进行的研究将调查改变人类的任务不变辅助策略。身体能量学和质心动量,构建一个完整的人机循环定制框架,快速反映定制这两个量,并通过对人体进行各种运动任务的实验来验证其功效。该奖项是 NSF 的法定使命,并已通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ge Lv其他文献

Soft Robotics for Fall Mitigation: Preliminary Design and Evaluation of a Wearable System using Continuum Robots
用于减轻跌倒的软机器人:使用 Continuum 机器人的可穿戴系统的初步设计和评估
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Param Malhotra;Nithesh Kumar;Chase G. Frazelle;Ian D. Walker;Ge Lv
  • 通讯作者:
    Ge Lv
Safety Augmentation for Volitional Human Locomotion via Lower-Limb Exoskeletons: A Case Study
通过下肢外骨骼增强人类自主运动的安全性:案例研究
  • DOI:
    10.1109/lcsys.2024.3402909
  • 发表时间:
    2024-09-14
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Miao;Qin Lin;Ge Lv
  • 通讯作者:
    Ge Lv
A Task-Invariant Learning Framework of Lower-Limb Exoskeletons for Assisting Human Locomotion
辅助人类运动的下肢外骨骼任务不变学习框架
  • DOI:
    10.23919/acc45564.2020.9147915
  • 发表时间:
    2020-07-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ge Lv;Haosen Xing;Jianping Lin;R. Gregg;C. Atkeson
  • 通讯作者:
    C. Atkeson
Task-Invariant Centroidal Momentum Shaping for Lower-Limb Exoskeletons
下肢外骨骼的任务不变质心动量整形
On the Design and Control of Highly backdrivable lower-limb exoskeletons
高度可反向驱动下肢外骨骼的设计与控制
  • DOI:
    10.1310/jb16-v04f-jal5-h1uv
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    Ge Lv;Hanqi Zhu;R. Gregg
  • 通讯作者:
    R. Gregg

Ge Lv的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

面向复杂任务的课程强化学习——生成、表示与复用
  • 批准号:
    62306088
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
多任务神经隐式场驱动的三维场景可编辑表达构建方法研究
  • 批准号:
    62302134
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向复杂深空探测任务的高性能智能开环射电信息系统关键模块的研究与设计
  • 批准号:
    62371177
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于Wasm的云边端协同智能物联网任务部署与调度技术研究
  • 批准号:
    62302096
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于敏捷响应与鲁棒增益的云服务任务调度关键技术研究
  • 批准号:
    62373382
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Advanced AI and RobotIcS for autonomous task pErformance
先进的人工智能和机器人控制系统可实现自主任务执行
  • 批准号:
    10110390
  • 财政年份:
    2024
  • 资助金额:
    $ 57.09万
  • 项目类别:
    EU-Funded
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
  • 批准号:
    2343600
  • 财政年份:
    2024
  • 资助金额:
    $ 57.09万
  • 项目类别:
    Standard Grant
Collaborative Research: Inverse Task Planning from Few-Shot Vision Language Demonstrations
协作研究:基于少镜头视觉语言演示的逆向任务规划
  • 批准号:
    2327973
  • 财政年份:
    2024
  • 资助金额:
    $ 57.09万
  • 项目类别:
    Standard Grant
Collaborative Research: Inverse Task Planning from Few-Shot Vision Language Demonstrations
协作研究:基于少镜头视觉语言演示的逆向任务规划
  • 批准号:
    2327973
  • 财政年份:
    2024
  • 资助金额:
    $ 57.09万
  • 项目类别:
    Standard Grant
Bilingualism as a cognitive reserve factor: the behavioral and neural underpinnings of cognitive control in bilingual patients with aphasia
双语作为认知储备因素:双语失语症患者认知控制的行为和神经基础
  • 批准号:
    10824767
  • 财政年份:
    2024
  • 资助金额:
    $ 57.09万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了