CAREER: Theoretical foundations for deep learning and large-scale AI models

职业:深度学习和大规模人工智能模型的理论基础

基本信息

  • 批准号:
    2339904
  • 负责人:
  • 金额:
    $ 45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-07-01 至 2029-06-30
  • 项目状态:
    未结题

项目摘要

Generative AI models have shown remarkable capabilities across various domains, making a transformative societal impact. However, their powerful capabilities present substantial challenges and risks due to limited theoretical foundations, especially regarding sensitive applications. The primary objective of this project is to establish a theoretical foundation for generative AI models including language models and diffusion models. The project will examine the capabilities and limitations of neural networks such as transformers and ResNets within these models, and develop techniques to interpret the algorithms implicitly implemented in these black-box systems. The theoretical investigation will leverage a diverse range of subjects including variational inference, sampling methods, high-dimensional statistics, computational complexity theory, and reinforcement learning theory. The results will provide valuable theoretical insights and promote the safe utilization of prevailing foundation models such as ChatGPT and DALLE. This project will establish a theoretical foundation to elucidate the capabilities and limitations of language models and diffusion models. The project will investigate three key learning modalities: in-context learning, generative modeling, and decision making. For in-context learning, this project will analyze which algorithms transformers can implicitly implement, develop techniques to interpret the algorithms implemented in transformers, and provide guarantees on optimization and generalization during meta-training. This project will derive conditions for neural networks to represent high-dimensional score functions for diffusion-based generative modeling. For decision-making, the project will reveal how neural networks can be meta-trained to approximate bandit and reinforcement learning algorithms and investigate approaches to employing neural networks as decision-making agents. The outcomes will guide principled design and responsible deployment of AI models across disciplines. The activities include graduate student training and new course developments.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
生成式人工智能模型在各个领域都表现出了卓越的能力,产生了变革性的社会影响。然而,由于理论基础有限,特别是在敏感应用方面,它们强大的功能带来了巨大的挑战和风险。该项目的主要目标是为生成人工智能模型(包括语言模型和扩散模型)建立理论基础。该项目将检查这些模型中 Transformer 和 ResNet 等神经网络的功能和局限性,并开发技术来解释这些黑盒系统中隐式实现的算法。理论研究将利用各种学科,包括变分推理、抽样方法、高维统计、计算复杂性理论和强化学习理论。研究结果将提供有价值的理论见解,并促进 ChatGPT 和 DALLE 等主流基础模型的安全利用。该项目将为阐明语言模型和扩散模型的能力和局限性奠定理论基础。该项目将研究三种关键的学习模式:情境学习、生成建模和决策。对于上下文学习,该项目将分析 Transformer 可以隐式实现哪些算法,开发解释 Transformer 中实现的算法的技术,并为元训练期间的优化和泛化提供保证。该项目将为神经网络推导出代表基于扩散的生成模型的高维评分函数的条件。对于决策,该项目将揭示如何对神经网络进行元训练以近似老虎机和强化学习算法,并研究使用神经网络作为决策代理的方法。结果将指导跨学科人工智能模型的原则性设计和负责任的部署。这些活动包括研究生培训和新课程开发。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Song Mei其他文献

Mechanism Study on the Flocculating of Ferric Chloride and Recent Progress
三氯化铁絮凝机理研究及最新进展
  • DOI:
  • 发表时间:
    2024-09-14
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lou Yongjiang;Song Mei;Wei D;an;an;Wei Jiu;Yan Xian
  • 通讯作者:
    Yan Xian
Research on the Real-Time Detection of Red Fruit Based on the You Only Look Once Algorithm
基于You Only Look Once算法的红色水果实时检测研究
  • DOI:
    10.3390/pr12010015
  • 发表时间:
    2023-12-20
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Song Mei;Wenqin Ding;Jinpeng Wang
  • 通讯作者:
    Jinpeng Wang
Oral administration of herbal oligonucleotide drug JGL-sRNA-h7 ameliorates hyperglycemia in db/db mice and beagle dogs.
口服草药寡核苷酸药物 JGL-sRNA-h7 可改善 db/db 小鼠和比格犬的高血糖症。
Thermal expansion and dimensional stability of unidirectional and orthogonal fabric M 40 / AZ 91 D composites
单向和正交织物 M 40 / AZ 91 D 复合材料的热膨胀和尺寸稳定性
  • DOI:
  • 发表时间:
    2024-09-14
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Song Mei
  • 通讯作者:
    Song Mei
Proximal algorithms for constrained composite optimization, with applications to solving low-rank SDPs
用于约束复合优化的近端算法,及其在求解低秩 SDP 中的应用
  • DOI:
  • 发表时间:
    2019-03-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yu Bai;John C. Duchi;Song Mei
  • 通讯作者:
    Song Mei

Song Mei的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Song Mei', 18)}}的其他基金

CIF: SMALL: Theoretical Foundations of Partially Observable Reinforcement Learning: Minimax Sample Complexity and Provably Efficient Algorithms
CIF:SMALL:部分可观察强化学习的理论基础:最小最大样本复杂性和可证明有效的算法
  • 批准号:
    2315725
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Mean Field Asymptotics in Statistical Inference: Variational Approach, Multiple Testing, and Predictive Inference
统计推断中的平均场渐进:变分方法、多重测试和预测推断
  • 批准号:
    2210827
  • 财政年份:
    2022
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant

相似国自然基金

负泊松比复合钢板剪力墙地震–爆炸动力灾变性能及协同设计理论研究
  • 批准号:
    52378179
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
通感算一体化智能车联网资源管理理论与技术研究
  • 批准号:
    62371406
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
地聚合物相调控理论与关键材料制备研究
  • 批准号:
    52378257
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
超大规模MIMO系统信道状态信息获取与无线传输理论研究
  • 批准号:
    62371180
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
代数群的表示理论及其在Siegel模形式上的应用
  • 批准号:
    12301016
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Strengthening the Theoretical Foundations of Federated Learning: Utilizing Underlying Data Statistics in Mitigating Heterogeneity and Client Faults
职业:加强联邦学习的理论基础:利用底层数据统计来减轻异构性和客户端故障
  • 批准号:
    2340482
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
CAREER: Theoretical Foundations for Learning Network Dynamics
职业:学习网络动力学的理论基础
  • 批准号:
    2338855
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
Computational and neurodevelopmental mechanisms of memory-guided decision-making
记忆引导决策的计算和神经发育机制
  • 批准号:
    10723314
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
Neurodevelopment of executive function, appetite regulation, and obesity in children and adolescents
儿童和青少年执行功能、食欲调节和肥胖的神经发育
  • 批准号:
    10643633
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
CAREER: Computer-Intensive Statistical Inference on High-Dimensional and Massive Data: From Theoretical Foundations to Practical Computations
职业:高维海量数据的计算机密集统计推断:从理论基础到实际计算
  • 批准号:
    2347760
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了