CAREER: New Frontiers of Private Learning and Synthetic Data
职业:私人学习和合成数据的新领域
基本信息
- 批准号:2339775
- 负责人:
- 金额:$ 68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-03-01 至 2029-02-28
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The vast collection of detailed personal data offers significant benefits to researchers, companies, and policymakers. To protect individual privacy, many organizations, both from the public and private sectors, have adopted differential privacy as a rigorous privacy measure. However, recent deployments of differential privacy have revealed key research gaps. First, much of the existing theoretical work in differential privacy focuses on worst-case analyses, which often lead to overly pessimistic results and fail to inform algorithm design in practice. Despite recent advancements, differentially private algorithms for machine learning and data sharing are still not widely adopted technologies. Lastly, the lack of comprehensive tools for privacy risk assessment makes it difficult for practitioners to evaluate the effectiveness of differential privacy and to determine appropriate privacy risk parameters. This project aims to address these challenges in differential privacy by expanding the repertoire of privacy-preserving algorithms and developing auditing mechanisms to assess the privacy protection these algorithms provide.The research focuses on two fundamental and closely related problems: private learning and private synthetic data. In private learning, the goal is to learn accurate machine learning models using sensitive data with differential privacy guarantees. In private synthetic data, the goal is to differentially privately generate a synthetic dataset that preserves important statistical trends of the sensitive dataset. The project advances the frontiers of these two problems with three research thrusts. The first thrust develops a theoretical framework that goes beyond pessimistic worst-case analyses to better capture practical scenarios and guide algorithm design. The second thrust designs practical algorithms that are informed by theoretical principles and empirical structures of the problems in practice. The third focuses on privacy attacks and auditing mechanisms that evaluate the privacy risks of learning and synthetic data algorithms. The project also includes a comprehensive educational and outreach program, providing research opportunities for students at different educational levels and developing new courses and educational materials.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
大量详细的个人数据为研究人员、公司和政策制定者带来了巨大的好处。为了保护个人隐私,许多公共和私营部门的组织都采用差异隐私作为严格的隐私措施。然而,最近差分隐私的部署揭示了关键的研究差距。首先,现有的差分隐私理论工作大多集中于最坏情况分析,这往往会导致过于悲观的结果,并且无法为实践中的算法设计提供信息。尽管最近取得了进展,但用于机器学习和数据共享的差分隐私算法仍然没有被广泛采用的技术。最后,缺乏全面的隐私风险评估工具,使得从业者难以评估差异隐私的有效性并确定合适的隐私风险参数。 该项目旨在通过扩展隐私保护算法的范围并开发审核机制来评估这些算法提供的隐私保护来解决差异隐私中的这些挑战。该研究重点关注两个基本且密切相关的问题:私人学习和私人合成数据。在私人学习中,目标是使用具有差异隐私保证的敏感数据来学习准确的机器学习模型。在私有合成数据中,目标是差异化地私有生成一个合成数据集,以保留敏感数据集的重要统计趋势。该项目通过三个研究重点推进了这两个问题的前沿。第一个推动力开发了一个超越悲观的最坏情况分析的理论框架,以更好地捕捉实际场景并指导算法设计。第二个主旨是根据实践中问题的理论原理和经验结构设计实用算法。第三个重点是隐私攻击和评估学习和合成数据算法的隐私风险的审计机制。该项目还包括全面的教育和推广计划,为不同教育水平的学生提供研究机会,并开发新课程和教材。该奖项反映了 NSF 的法定使命,通过使用基金会的智力优势和更广泛的评估,被认为值得支持。影响审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhiwei Steven Wu其他文献
Competing Bandits: Learning Under Competition
强盗竞争:在竞争中学习
- DOI:
10.4230/lipics.itcs.2018.48 - 发表时间:
2017-02-01 - 期刊:
- 影响因子:0
- 作者:
Y. Mansour;Aleks;rs Slivkins;rs;Zhiwei Steven Wu - 通讯作者:
Zhiwei Steven Wu
Locally Private Bayesian Inference for Count Models
计数模型的局部私有贝叶斯推理
- DOI:
- 发表时间:
2018-03-22 - 期刊:
- 影响因子:0
- 作者:
Aaron Schein;Zhiwei Steven Wu;Mingyuan Zhou;Hanna M. Wallach - 通讯作者:
Hanna M. Wallach
Reconstruction Attacks on Machine Unlearning: Simple Models are Vulnerable
对机器遗忘的重构攻击:简单模型很脆弱
- DOI:
10.48550/arxiv.2405.20272 - 发表时间:
2024-05-30 - 期刊:
- 影响因子:0
- 作者:
Martin Bertran;Shuai Tang;Michael Kearns;Jamie Morgenstern;Aaron Roth;Zhiwei Steven Wu - 通讯作者:
Zhiwei Steven Wu
Confidence-ranked reconstruction of census microdata from published statistics
根据已发布的统计数据对人口普查微观数据进行置信度排序重建
- DOI:
- 发表时间:
2023-02 - 期刊:
- 影响因子:11.1
- 作者:
Travis Dicka;Cynthia Dwork;Michael Kearns;Terrance Liu;Aaron Roth;Giuseppe Vietri;Zhiwei Steven Wu - 通讯作者:
Zhiwei Steven Wu
Inverse Reinforcement Learning without Reinforcement Learning
无强化学习的逆强化学习
- DOI:
10.48550/arxiv.2303.14623 - 发表时间:
2023-03-26 - 期刊:
- 影响因子:0
- 作者:
Gokul Swamy;David J. Wu;Sanjiban Choudhury;J. Bagnell;Zhiwei Steven Wu - 通讯作者:
Zhiwei Steven Wu
Zhiwei Steven Wu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhiwei Steven Wu', 18)}}的其他基金
Collaborative Research: SaTC: CORE: Medium: Private Model Personalization
协作研究:SaTC:核心:媒介:私人模型个性化
- 批准号:
2232693 - 财政年份:2023
- 资助金额:
$ 68万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Small: Foundations for the Next Generation of Private Learning Systems
协作研究:SaTC:核心:小型:下一代私人学习系统的基础
- 批准号:
2120611 - 财政年份:2021
- 资助金额:
$ 68万 - 项目类别:
Standard Grant
FAI: Advancing Fairness in AI with Human-Algorithm Collaborations
FAI:通过人类算法合作促进人工智能的公平性
- 批准号:
2125692 - 财政年份:2020
- 资助金额:
$ 68万 - 项目类别:
Standard Grant
FAI: Advancing Fairness in AI with Human-Algorithm Collaborations
FAI:通过人类算法合作促进人工智能的公平性
- 批准号:
1939606 - 财政年份:2020
- 资助金额:
$ 68万 - 项目类别:
Standard Grant
相似国自然基金
新的先天性甲减致病基因CNTN6突变导致疾病的发生及其机制研究
- 批准号:82301943
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
SOX2/LIN28通路调控一类新细胞TAMEP在胶质瘤复发中的作用和机制研究
- 批准号:82303400
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
新物质主义视角下旅游商品带动地方发展的格局、过程及作用机制
- 批准号:42371235
- 批准年份:2023
- 资助金额:46 万元
- 项目类别:面上项目
通过筛选新的AAV递送系统在小鼠中实现耳聋精准治疗的研究
- 批准号:82371161
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
老年重症新冠患者体内炎性细胞的特点、免疫致病机制及临床转归的研究
- 批准号:82370019
- 批准年份:2023
- 资助金额:65 万元
- 项目类别:面上项目
相似海外基金
CAREER: New Frontiers in Continuous-time Open Quantum Systems
职业:连续时间开放量子系统的新领域
- 批准号:
2238766 - 财政年份:2023
- 资助金额:
$ 68万 - 项目类别:
Continuing Grant
CAREER: New Frontiers in the Dynamics of Topological Solitons
职业:拓扑孤子动力学的新领域
- 批准号:
2235233 - 财政年份:2023
- 资助金额:
$ 68万 - 项目类别:
Continuing Grant
CAREER: New Frontiers in Graph Generation
职业:图生成的新领域
- 批准号:
2239869 - 财政年份:2023
- 资助金额:
$ 68万 - 项目类别:
Continuing Grant
CAREER: New Frontiers in Quantum Protocols, Operator Algebras, and Property Testing
职业:量子协议、算子代数和属性测试的新领域
- 批准号:
2144219 - 财政年份:2022
- 资助金额:
$ 68万 - 项目类别:
Continuing Grant
CAREER: New Frontiers In Large-Scale Spatiotemporal Data Analysis
职业:大规模时空数据分析的新领域
- 批准号:
2146343 - 财政年份:2022
- 资助金额:
$ 68万 - 项目类别:
Continuing Grant