CAREER: Advancing ceramic processing science through acoustic characterization

职业:通过声学表征推进陶瓷加工科学

基本信息

  • 批准号:
    2338898
  • 负责人:
  • 金额:
    $ 69.6万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-04-01 至 2029-03-31
  • 项目状态:
    未结题

项目摘要

Non-technical AbstractThis CAREER award project explores the development of dense polycrystalline ceramic materials through a process known as cold sintering. Traditional sintering methods, which involve a combination of heat and pressure, require extensive time and high temperatures to achieve desired densities, microstructures, and properties in the final ceramic product. In contrast, cold sintering presents a more energy efficient alternative, significantly reducing processing times to between 5 to 60 minutes and lower temperatures. Thus, cold sintering can provide an eco-friendly alternative to manufacturing electroceramics, which is likely to become an increasingly relevant issue in developing new technologies across industries. However, despite achieving high relative densities, some materials produced via cold sintering do not exhibit mechanical or functional properties comparable with those created through conventional sintering methods. With this CAREER award, supported by the Ceramics program in NSF’s Division of Materials Research, the principal investigator and her research group investigate connections between the processing methods, microstructural outcomes, and properties of cold sintered materials. The project involves developing a multifaceted characterization approach, emphasizing acoustic measurement techniques, for this investigation. The research could eventually lead to large-scale manufacturing feasibility by uncovering the underlying mechanisms that ensure uniform, high-performing, functional ceramics components prepared by cold sintering. Leveraging the interdisciplinary nature of the research, the project provides targeted educational experiences for students and professionals at various stages. Activities planned include development of comprehensive educational materials and an immersive summer program designed to spark interest and understanding in sound and wave propagation among elementary school students, particularly young girls and students of Hispanic heritage.Technical AbstractThis CAREER award, supported by the Ceramics program in NSF’s Division of Materials Research, advances the fundamental understanding of the role processing conditions play regarding the resulting structure of cold sintered components using multi-modal and real-time monitoring of the manufacturing process. More specifically, this CAREER project examines the use of acoustic methods to characterize micro- and macro-flaws in cold sintered specimens, yielding a fundamental understanding of the primary mechanisms impacting the ceramic sintering process. The initial nondestructive assessment of effective properties and structures using acoustic methods facilitates targeted characterization at significantly smaller scales using conventional methods including X-ray computed tomography and electron microscopy. By studying the influence of various processing parameters on the resulting microstructure and properties of cold sintered parts, this project provides the fundamental understanding to enable eco-friendly, energy-efficient production of a large suite of material systems, including ceramics and organic-inorganic hybrid materials. This general foundation is critical in the characterization of other novel ceramic processing approaches and newly developed material systems. The methods the principal investigator and her research group use also help advance existing models of elastic wave propagation and scattering by incorporating the effects of piezoelectric coupling through modified effective medium models and complex microstructural features through representative volume element approaches. These methods provide a significant advancement in the field of nondestructive material characterization.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要该职业奖项目探索通过称为冷烧结的工艺开发致密多晶陶瓷材料,该方法涉及热和压力的结合,需要大量的时间和高温才能达到所需的密度、微观结构和性能。相比之下,冷烧结提供了一种更节能的替代方案,可将加工时间显着缩短至 5 至 60 分钟并降低温度。烧结可以为制造电陶瓷提供一种环保的替代方案,这可能成为跨行业开发新技术的一个日益相关的问题。然而,尽管实现了较高的相对密度,但通过冷烧结生产的一些材料并未表现出可比的机械或功能特性。在 NSF 材料研究部陶瓷项目的支持下,首席研究员和她的研究小组研究了加工方法、微观结构结果和材料之间的联系。该项目涉及开发一种多方面的表征方法,强调声学测量技术,通过揭示确保均匀、高性能、功能陶瓷的基本机制,该研究最终可能导致大规模制造的可行性。利用冷烧结制备的组件,该项目为不同阶段的学生和专业人士提供有针对性的教育体验,包括开发综合教育材料和旨在激发灵感的沉浸式夏季项目。小学生,特别是年轻女孩和西班牙裔学生对声波传播的兴趣和理解。技术摘要该职业奖由 NSF 材料研究部陶瓷项目支持,增进了对加工条件在以下方面所起作用的基本理解:更具体地说,这个职业项目研究了使用声学方法来表征冷中的微观和宏观缺陷。使用声学方法对有效性能和结构进行初步无损评估,有助于使用 X 射线计算机断层扫描和电子显微镜等传统方法在更小的尺度上进行有针对性的表征。该项目研究各种加工参数对冷烧结零件的微观结构和性能的影响,为实现一大套材料系统的环保、节能生产提供了基本的了解,包括这一通用基础对于其他新型陶瓷加工方法和新开发的材料系统的表征至关重要,主要研究者和她的研究小组使用的方法也有助于推进现有的弹性波传播和散射模型。这些方法通过改进的有效介质模型和复杂的微观结构特征结合了压电耦合的影响,在无损材料表征领域取得了重大进展。该奖项反映了 NSF 的法定使命,并通过评估被认为值得支持。利用基金会的智力优势和更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrea Arguelles其他文献

Andrea Arguelles的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrea Arguelles', 18)}}的其他基金

Collaborative Research: Particle Reinforced Ice as a Tunable Acoustic Couplant
合作研究:粒子强化冰作为可调声耦合剂
  • 批准号:
    2029142
  • 财政年份:
    2021
  • 资助金额:
    $ 69.6万
  • 项目类别:
    Standard Grant

相似国自然基金

果蝇幼虫前进运动发起的神经机制
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
机器人鸟“前进”运动控制神经信息传导通路及反馈研究
  • 批准号:
    61903230
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
内蒙古中东部毛登-前进场早石炭世强过铝花岗岩带地球化学成因及其构造意义
  • 批准号:
    41702054
  • 批准年份:
    2017
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
搅拌摩擦焊接过程前进阻力周期脉动振荡行为及调控研究
  • 批准号:
    51675248
  • 批准年份:
    2016
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目
高前进比大反流区对旋翼操纵响应的作用机理及影响规律研究
  • 批准号:
    51505216
  • 批准年份:
    2015
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

RII Track-4: NSF: Advancing High Density and High Operation Temperature Traction Inverter by Gallium Oxide Packaged Power Module
RII Track-4:NSF:通过氧化镓封装功率模块推进高密度和高工作温度牵引逆变器
  • 批准号:
    2327474
  • 财政年份:
    2024
  • 资助金额:
    $ 69.6万
  • 项目类别:
    Standard Grant
MFB: Evaluating and Advancing Cryo-EM for RNA Conformational Ensembles
MFB:评估和推进 RNA 构象整体的冷冻电镜
  • 批准号:
    2330652
  • 财政年份:
    2024
  • 资助金额:
    $ 69.6万
  • 项目类别:
    Standard Grant
CAREER: From Flamelet to Full-Scale: Advancing Plasma-Assisted Combustion for Low-Emission Sustainable Fuels
职业生涯:从小火焰到全面:推进低排放可持续燃料的等离子体辅助燃烧
  • 批准号:
    2339518
  • 财政年份:
    2024
  • 资助金额:
    $ 69.6万
  • 项目类别:
    Continuing Grant
CAREER: Advancing Laser Powder Bed Fusion with Non-Spherical Powder
职业:推进激光粉末床与非球形粉末的融合
  • 批准号:
    2339857
  • 财政年份:
    2024
  • 资助金额:
    $ 69.6万
  • 项目类别:
    Standard Grant
CAREER: Heterogeneity-Enriched Communication for Advancing HPC Systems and Applications
职业:丰富异构性的通信以推进 HPC 系统和应用程序
  • 批准号:
    2340982
  • 财政年份:
    2024
  • 资助金额:
    $ 69.6万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了