CAREER: Dynamics and structure of comb polymer elastomers
职业:梳状聚合物弹性体的动力学和结构
基本信息
- 批准号:2338550
- 负责人:
- 金额:$ 67.04万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-09-01 至 2029-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
NON-TECHNICAL SUMMARY:Polymer networks consisting of branch polymer architectures (polymers with sidechains attached to linear backbones) can be used to independently tune material stiffness and elasticity. Supersoft and hyper-elastic solvent-free materials offer potentially transformative opportunities for emerging applications in stretchable electronics and biomaterials. Controlling network properties, however, remains a significant challenge due to synthetic limitations associated with the underlying branch polymer architecture. This research project will directly investigate the relationship between network structure, mechanics, and branch polymer architecture by developing synthetic methods to precisely control branch length, spacing between branches, and the chemistry that links branches together. Light scattering and rheological characterization techniques will be used to measure network properties under varying solution and bulk conditions. The insights gained from this research will address a critical knowledge gap in understanding the mechanical properties of topologically complex polymer networks, including those that depend on deformation history. The results from this project are expected to inform design of tunable materials with enhanced processing efficiency and predictable mechanical properties for applications that use films, fibers, and foams. Outreach efforts will be developed to increase intellectual diversity and the number of underrepresented scientists in soft matter research by creating innovative symposia focused on community college teachers and students and on cross-sector collaboration between academia, industry, and national laboratories. TECHNICAL SUMMARY:The molecular design of branch polymer elastomers offers a potentially transformative route towards synthetic networks with gel-like softness, high elasticity, and enhanced strain-adaptive stiffening for applications ranging from stretchable electronics to biomimetic tissues. The efficacy of these materials is dependent on the underlying polymer topology (i.e., linear, comb, and bottlebrush polymers) of the cross-linked network. For example, comb and bottlebrush elastomers have unprecedented mechanical properties because stiffness and elasticity can be decoupled by varying sidechain length, sidechain spacing, and cross-link spacing. Due to synthetic limitations, however, the cross-link and sidechain uniformity and spacing are challenging to control precisely and characterize experimentally. Thus, there remains a critical need for an experimental platform with precise control of cross-link and sidechain spacing to elucidate structure-function relationships in branch polymer elastomers. This CAREER project will address these outstanding challenges through investigation of model comb polymers with precise topological parameters to develop a fundamental understanding of the effects of cross-link and sidechain uniformity on elastomer formation, mechanical properties, and structure, thus establishing a new paradigm in elastomer design. Expertise in polymer synthesis, X-ray/neutron scattering, solution dynamics, and STEM outreach will be integrated to address three research aims and one educational aim: (1) determine the role of comb polymer topology on elastomer formation and dynamics, (2) understand the effects of comb polymer topology on elastomer mechanics, (3) characterize the effects of comb polymer topology on elastomer structure, and (4) establish new symposia and research opportunities for undergraduates to increase intellectual diversity and support underrepresented scientists in soft matter research..This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要:由支化聚合物结构(侧链连接到线性主链的聚合物)组成的聚合物网络可用于独立调节材料的刚度和弹性。超软和超弹性无溶剂材料为可拉伸电子和生物材料的新兴应用提供了潜在的变革机会。然而,由于与底层支化聚合物结构相关的合成限制,控制网络特性仍然是一个重大挑战。该研究项目将通过开发精确控制分支长度、分支之间的间距以及将分支连接在一起的化学的合成方法来直接研究网络结构、力学和分支聚合物结构之间的关系。光散射和流变表征技术将用于测量不同溶液和本体条件下的网络特性。从这项研究中获得的见解将解决理解拓扑复杂聚合物网络(包括依赖于变形历史的网络)机械性能方面的关键知识差距。该项目的结果预计将为可调谐材料的设计提供信息,这些材料具有更高的加工效率和可预测的机械性能,适用于使用薄膜、纤维和泡沫的应用。将开展外展工作,通过举办以社区学院教师和学生为重点的创新研讨会以及学术界、工业界和国家实验室之间的跨部门合作,增加软物质研究领域的知识多样性和代表性不足的科学家数量。 技术摘要:支化聚合物弹性体的分子设计为合成网络提供了一条潜在的变革途径,该网络具有凝胶般的柔软性、高弹性和增强的应变适应性刚度,适用于从可拉伸电子产品到仿生组织的各种应用。这些材料的功效取决于交联网络的基础聚合物拓扑(即线性、梳状和瓶刷状聚合物)。例如,梳子和洗瓶刷弹性体具有前所未有的机械性能,因为可以通过改变侧链长度、侧链间距和交联间距来解耦刚度和弹性。然而,由于合成的限制,交联和侧链的均匀性和间距很难精确控制和通过实验表征。因此,仍然迫切需要一个能够精确控制交联和侧链间距的实验平台,以阐明支化聚合物弹性体中的结构-功能关系。该职业项目将通过研究具有精确拓扑参数的模型梳状聚合物来解决这些突出的挑战,以深入了解交联和侧链均匀性对弹性体形成、机械性能和结构的影响,从而建立弹性体的新范例设计。将整合聚合物合成、X 射线/中子散射、溶液动力学和 STEM 推广方面的专业知识,以实现三个研究目标和一个教育目标:(1) 确定梳状聚合物拓扑对弹性体形成和动力学的作用,(2)了解梳状聚合物拓扑对弹性体力学的影响,(3) 表征梳状聚合物拓扑对弹性体结构的影响,(4) 为本科生建立新的研讨会和研究机会,以增加智力多样性并支持软物质研究中代表性不足的科学家。 .这个奖项体现了通过使用基金会的智力价值和更广泛的影响审查标准进行评估,NSF 的法定使命被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Amanda Marciel其他文献
Two-dimensional perovskite templates for durable, efficient formamidinium perovskite solar cells
用于耐用、高效甲脒钙钛矿太阳能电池的二维钙钛矿模板
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:56.9
- 作者:
Siraj Sidhik;Isaac Metcalf;Wenbin Li;Tim Kodalle;Connor J. Dolan;Mohammad Khalili;J. Hou;Faiz Mandani;Andrew J. Torma;Hao Zhang;Rabindranath Garai;Jessica Persaud;Amanda Marciel;Itzel Alejandra;Muro Puente;G. N. M. Reddy;Adam Balvanz;Muhammad A. Alam;C. Katan;Esther Tsai;David S. Ginger;D. Fenning;Mercouri G. Kanatzidis;Carolin Sutter;Jacky Even;Aditya D. Mohite - 通讯作者:
Aditya D. Mohite
Amanda Marciel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Amanda Marciel', 18)}}的其他基金
Collaborative Research: Role of Polymer Sequence on Penetrant Transport in Charged Brushes
合作研究:聚合物序列对带电刷中渗透剂传输的作用
- 批准号:
2113767 - 财政年份:2021
- 资助金额:
$ 67.04万 - 项目类别:
Standard Grant
相似国自然基金
低共熔溶剂与水二元体系从超浓电解液到稀水溶液转变过程中的界面结构及反应动力学研究
- 批准号:22372140
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于软物质慢动力学模型的再制干酪结构形变分析与功能定向调控机制
- 批准号:32372381
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
模型与数据驱动的高维非线性结构降维方法及索/梁动力学应用
- 批准号:12372007
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
单晶富锂锰基正极材料结构设计与反应动力学调控
- 批准号:22379052
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
氧化铝液滴沉积的动力学特性及其包覆条件下碳/碳喉衬热结构特性研究
- 批准号:52302479
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Neural control of speech generation in human motor cortex
人类运动皮层语音生成的神经控制
- 批准号:
10722067 - 财政年份:2023
- 资助金额:
$ 67.04万 - 项目类别:
Spatiotemporal Dynamics of Language Processing in School-Age Children with Mild-to-Severe Hearing Loss
轻度至重度听力损失学龄儿童语言处理的时空动态
- 批准号:
10652918 - 财政年份:2023
- 资助金额:
$ 67.04万 - 项目类别:
Targeting mitochondrial dynamics in drug-resistant acute myeloid leukemia
靶向耐药急性髓系白血病的线粒体动力学
- 批准号:
10751235 - 财政年份:2023
- 资助金额:
$ 67.04万 - 项目类别:
Pharmacokinetics-Based DNA-Encoded Library Screening
基于药代动力学的 DNA 编码文库筛选
- 批准号:
10644211 - 财政年份:2023
- 资助金额:
$ 67.04万 - 项目类别: